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• Paper [6]:

"Damped response theory description of two-photon absorption"

Kasper Kristensen, Joanna Kauczor, Andreas J. Thorvaldsen, Poul Jørgensen, Thomas

Kjærgaard, and Antonio Rizzo, J. Chem. Phys. 134, 214104 (2011)

• Paper [7]:

"A Locality Analysis of the Divide-Expand-Consolidate Coupled Cluster Amplitude Equa-

tions"

Kasper Kristensen, Marcin Ziółkowski, Branislav Jansík, Thomas Kjærgaard, and Poul

Jørgensen, J. Chem. Theory Comput. 7, 1677 (2011)

• Paper [8]:

"On the theoretical foundation of the divide-expand-consolidate (DEC) coupled cluster

method. Numerical illustrations using second order Møller-Plesset perturbation theory"

Ida-Marie Høyvik, Kasper Kristensen, Branislav Jansík, and Poul Jørgensen (in prepara-

tion)

• Paper [9]:

"MP2 molecular gradient using the Divide-Expand-Consolidate approach"

Kasper Kristensen, Simen Reine, Thomas Kjærgaard, Branislav Jansík, Ida-Marie Høyvik,

and Poul Jørgensen (submitted)

• Paper [10]:

"Local orbitals by minimizing powers of the orbital variance"

Branislav Jansík, Stinne Høst, Kasper Kristensen, and Poul Jørgensen, J. Chem. Phys.

134, 194104 (2011)

• Paper [11]:

"Recent advances in wave-function-based methods of molecular-property calculations"

Trygve Helgaker, Sonia Coriani, Poul Jørgensen, Kasper Kristensen, Jeppe Olsen, and

Kenneth Ruud (submitted)

The original papers are attached at the end of the thesis. The first ten chapters of this

thesis describe papers [1]-[10] in that order. Since paper [11] is a review paper containing no

new developments as such, it is not treated in detail in this thesis. However, it should be noted

that the introduction to response theory in Chapter 1, the description of density-matrix based

response theory in Chapter 2, and the description to damped response theory in Chapter 4 have

been inspired by the treatments of these subjects in paper [11].

As is evident from the titles given above, several different topics have been investigated

during my PhD studies. One common aspect is the goal of reformulating standard quantum

chemical models to make these applicable to large molecular systems – optimally to obtain im-

plementations where the computational time scales only linearly with system size. Nevertheless,
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quite different subjects have been covered, and for clarity the thesis is divided into two main

areas of research:

• Part A describes developments in response theory – with focus on Hartree-Fock (HF)

theory and density functional theory (DFT) – where the aim has been to reformulate

the conventional response theory expressions to be able to perform calculations on large

molecular systems. Chapter 1 contains a general introduction to response theory, Chapters

2-3 describe density-matrix based HF/DFT response theory in the atomic orbital basis,

and damped response theory is treated in Chapters 4–6.

• Part B is devoted to the Divide-Expand-Consolidate (DEC) coupled-cluster method,

which is an attempt to reformulate and implement standard coupled-cluster theory in

a linear-scaling and embarrassingly parallel fashion, with control of the errors introduced

compared to a conventional coupled-cluster calculation. In particular, Chapters 7 and 8

describe the DEC method for evaluating the coupled-cluster energy, and the molecular

gradient is considered in Chapter 9. The existence of a set of local HF orbitals is crucial

for the validity of the DEC approach, and Chapter 10 describes such local HF orbitals

may be obtained.

Using the division of articles into separate chapters it has been my intention to give future PhD

students easy access to summarized descriptions of each of the various topics – i.e., each chapter

in this thesis can be read relatively independently of the other chapters.

My work has been focused mainly on the – somewhat lengthy and tedious – theoretical formu-

lations aiming at linear-scaling implementations, rather than on performing actual applications

on large molecular systems.

Miscellaneous

Atomic units are used throughout this thesis unless stated otherwise.

The theory developments presented in this thesis have been implemented in the LSDalton

(Linear-Scaling Dalton) program [12]. The response theory developments presented in part A

are publicly available, while, at this stage, the DEC method described in part B has only been

implemented in a local version of the LSDalton program.
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Chapter 1

Response theory

Section 1.7 describes the work presented in paper [1].

1.1 Introduction

Molecular properties represent the link between observable quantities that can be determined

in experimental investigations and quantum chemical calculations [13]. For this reason, the cal-

culation of molecular properties has been an essential target since the development of modern

electronic-structure methods was initiated. Nowadays, electronic-structure calculations provide

invaluable help in the interpretation of experimental measurements of a broad range of molecular

properties, including rotational and vibrational spectroscopies [14], ultraviolet–visible spectro-

scopies [15, 16], magnetic-resonance spectroscopies [17–19], linear and nonlinear optics [20–22],

and optical activity [23].

Response theory, as developed in the eighties [13], has been used successfully to calculate a

large variety of molecular properties for ground and excited states and for transitions between

these states. In the nineties, the quasi-energy approach [24, 25] tied response function theory

closely to the energy-derivative techniques in time-independent theory. Using the quasi-energy

approach, response functions may straightforwardly be derived for both variational and nonva-

riational wave functions [25].

In this chapter we consider response theory using the quasi-energy formulation. Although the

focus is on exact theory, the working equations for determining response functions and response

parameters are also valid for approximate variational wave function models. In Section 1.2 we

consider the time-evolution of an exact state, and in Section 1.3 we discuss the variation principle

for the quasi-energy. Sections 1.4 and 1.5 are devoted to response functions and their residues,

respectively, whereas response equations are discussed in Section 1.6. Section 1.7 describes how

to obtain the computationally simplest expressions for response functions.
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Response theory

1.2 The time-development of an exact state

Consider a time-dependent electronic wave function |0̄〉 for a molecular system. The time devel-

opment of |0̄〉 is governed by the time-dependent Schrödinger equation

H |0̄〉 = i ∂t |0̄〉 (1.1)

where ∂t = ∂
∂t represents the derivative with respect to time, and the Hamiltonian consists of a

time-independent part H0 and a time-dependent perturbation V (t)

H = H0 + V (t) (1.2)

In electronic structure theory H0 may be written as,

H0 = T + VNe + Vee + hnuc (1.3)

where T is the kinetic energy, VNe is the nuclear-electron attraction, Vee is the electron-electron

repulsion, and hnuc is the nuclear-nuclear repulsion,

T = −
∑
i

1
2∇

2
i (1.4a)

VNe = −
∑
iK

ZKr
−1
iK (1.4b)

Vee =
1

2

∑
i 6=j

1

rij
(1.4c)

hnuc =
1

2

∑
I 6=J

ZIZJ
RIJ

(1.4d)

In Eq. (1.4) ZK is the charge of nucleus K, riK is the distance between electron i and nucleus

K, rij is the distance between electrons i and j, and RIJ is the inter-nuclear distance between

nuclei I and J . The form of V (t) will be specified in Section 1.3.

Both components of the Hamiltonian in Eq. (1.2) are Hermitian, i.e., H0 = H†0 and V (t) =

V (t)†. From Eq. (1.1) it then follows that the norm 〈0̄|0̄〉 is independent of time:

∂t〈0̄|0̄〉 = 〈 ˙̄0|0̄〉+ 〈0̄| ˙̄0〉 = i 〈0̄ |H| 0̄〉 − i 〈0̄ |H| 0̄〉 = 0 (1.5)

Thus, assuming that |0̄〉 is normalized at t = 0,

〈0̄(t = 0)|0̄(t = 0)〉 = 1 (1.6)

it is also normalized at all subsequent times t.

It is convenient to separate a phase factor out from the wave function, by writing |0̄〉 as a

product of a real phase factor F (t) and a regular wave function |0̃〉:

|0̄〉 = e−iF (t) |0̃〉 (1.7)

Note that by construction |0̃〉 is a normalized wave function because |0̄〉 is normalized.

4



1.3 The time-dependent variation principle

By substituting the representation of |0̄〉 of Eq. (1.7) into Eq. (1.1), we obtain the time-

dependent Schrödinger equation in terms of |0̃〉 and F (t):(
H − i ∂t−Ḟ (t)

)
|0̃〉 = 0 (1.8)

Projecting this equation onto the orthogonal complement to |0̃〉 by the projection operator

P = 1− | 0̃〉〈0̃ | (1.9)

we arrive at the following projected time-dependent Schrödinger equation for the regular wave

function:

P (H − i ∂t) |0̃〉 = 0 (1.10)

On the other hand, projection onto | 0̃〉 yields an equation for the phase factor:

Ḟ (t) =
〈
0̃ |H − i ∂t| 0̃

〉
(1.11)

By first solving Eq. (1.10) for the regular wave function and subsequently determining the phase

factor by integrating Eq. (1.11), we obtain the full solution to the Schrödinger equation. It is

instructive to consider the special case, where V (t) = 0 and |0̃〉 is chosen as the time-independent

eigenfunction | o〉 for the ground state of H0,

H0| o〉 = E0| o〉 (1.12)

In this case Eq. (1.11) yields

Ḟ (t) = 〈o |H0| o〉 = E0 (1.13)

and the total wave function |0̄〉 = e−iE0t| o〉 trivially satisfies the time-dependent Schrödinger

equation in Eq. (1.1). Due to the equivalence of Ḟ (t) and E0 for the unperturbed system, the

differentiated phase factor is known as the time-dependent quasi-energy Q(t) in the presence of

a general perturbation V (t):

Q(t) = Ḟ (t) =
〈
0̃ |H − i ∂t| 0̃

〉
(1.14)

We note that Q(t) is a real quantity because F (t) is real.

1.3 The time-dependent variation principle

It is possible to formulate a variation principle for the time-dependent quasi-energy. From

Eq. (1.8), we obtain for an arbitrary variation |δ0̃〉 in the regular wave function〈
δ0̃ |H − i ∂t−Q| 0̃

〉
= 0 (1.15)

Taking the complex conjugate of Eq. (1.15) and adding this term to the same equation, it follows

that

δ
〈
0̃ |H − i ∂t| 0̃

〉
+ i

d

dt
〈0̃|δ0̃〉 = 0 (1.16)

5



Response theory

where we have used that δ
〈
0̃ |Q| 0̃

〉
= Qδ〈0̃|0̃〉 = 0, which follows from the normalization of the

wave function. This equation, which determines the time-dependent wave function at a given

time t, constitutes the time-dependent variation principle of Langhoff, Epstein, and Karplus [26].

Eq. (1.16) is not a variation principle in the usual sense of the term, where the variation in the

function determined vanishes at the solution.

To establish a standard variation principle for the regular wave function, we assume a periodic

time-dependent perturbation of period T and frequency ω = 2π/T :

V (t+ T ) = V (t) (1.17)

In particular, we choose to the following Fourier expansion for V (t),

V (t) =
∑
B

εBVBe
−iωBt (1.18)

where εB is a perturbation strength parameter associated with the operator VB. For example,

εB may refer to the electric field strength component associated with the electric dipole operator

component µB. The summation in Eq. (1.18) runs over both positive and negative indices, and

the periodicity of V (t) dictates that the frequencies ωB may all be written as nω, where n is

an integer (negative, zero, or positive). From the requirement of Hermiticity, V (t) = V (t)†, we

obtain the following relations connecting the frequencies, perturbation strengths, and operators

for indices (B) and (−B):

ω−B = −ωB; V †B = V−B; ε∗B = ε−B (1.19)

In general we allow for complex perturbation strengths. Instead of using the real and imaginary

parts of εB as the independent parameters, it will be convenient to consider εB and ε∗B as the

independent parameters.

It may be shown [25] that the regular wave function oscillates with the same period T as

V (t):

|0̃(t+ T )〉 = |0̃(t)〉 (1.20)

The time-dependent quasi-energy Q(t) in Eq. (1.14) is therefore also periodic. We now introduce

the time-average of a periodic function g(t) as

{g}T =
1

T

∫ T

0
g(t) dt (1.21)

and define the time-averaged quasi-energy Q as the time-average of the time-dependent quasi-

energy:

Q = {Q(t)}T =
{〈

0̃ |H − i ∂t| 0̃
〉}
T

(1.22)

In the following we denote the time-averaged quasi-energy Q simply as the quasi-energy since

it is the analogue of the energy in time-independent theory, whereas Q(t) is referred to as the

time-dependent quasi-energy.
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By taking the time-average of the variation principle in Eq. (1.16) and invoking the peri-

odicity of |0̃〉 and |δ0̃〉 the second term vanishes, and we obtain the variation principle for the

quasi-energy :

δQ = 0 (1.23)

which is analogous to the variation principle for the energy in time-independent theory. This is

the form that we will use in the following.

Let us now differentiate the quasi-energy with respect to one particular perturbation strength

εA entering V (t) and invoke the stationary condition in Eq. (1.23),

dQ
dεA

=
{〈

0̃ |∂εAH| 0̃
〉}

T
+
{〈
∂εA 0̃ |H − i ∂t| 0̃

〉}
T

+
{〈

0̃ |H − i ∂t| ∂εA 0̃
〉}

T

=
{〈

0̃ |∂εAH| 0̃
〉}

T
+ δQ|δ0̃=∂εA 0̃

=
{〈

0̃ |∂εAH| 0̃
〉}

T
(1.24)

where we have used that δQ = 0 for any variation of the regular wave function, including the

variation ∂εA 0̃. Eq. (1.24) constitutes a generalization of the Hellmann–Feynman theorem [27, 28]

to the time-dependent regime. Insertion of Eq. (1.2) into Eq. (1.24) and use of Eq. (1.18) yields

an expression, which is useful for identifying response functions in the following section,

dQ
dεA

=
{〈

0̃
∣∣VAe−iωAt

∣∣ 0̃〉}
T

=
{〈

0̃ |VA| 0̃
〉

e−iωAt
}
T

(1.25)

1.4 Response functions

We now demonstrate how response functions are determined within the quasi-energy formalism.

Response functions are defined in terms of the time-dependent expectation value of an operator

VA [13]:

〈VA〉(t) =
〈
0̃ |VA| 0̃

〉
= 〈o |VA| o〉+

∑′

B

εB〈〈VA;VB〉〉ωBe
−iωBt

+
1

2!

∑′

B,C

εBεC〈〈VA;VB, VC〉〉ωB ,ωCe
−i(ωB+ωC)t

+
1

3!

∑′

B,C,D

εBεCεD〈〈VA;VB, VC , VD〉〉ωB ,ωC ,ωDe
−i(ωB+ωC+ωD)t + · · · (1.26)

where 〈〈VA;VB〉〉ωB , 〈〈VA;VB, VC〉〉ωB ,ωC , and 〈〈VA;VB, VC , VD〉〉ωB ,ωC ,ωD are the linear, quadratic

and cubic response functions, respectively, and where the prime in the summation indicates that

perturbation indices A and −A are excluded from the summation. Response functions con-

tain a wealth of information about the response of a molecular system to one or more external

fields (such as the electromagnetic field of a laser). If, for example, the operators in question

are electric dipole operators, then the linear, quadratic, and cubic response functions represent

the polarizability, and the first and second hyperpolarizabilities, respectively. In many cases
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response functions may be directly related to observables measured using various experimental

techniques; some examples are given in Ref. [13].

Before connecting response functions to the quasi-energy we note that the quadratic response

functions involving VA, VB, and VC enter Eq. (1.26) as
1

2!
εBεC

(
〈〈VA;VB, VC〉〉ωB ,ωC + 〈〈VA;VC , VB〉〉ωC ,ωB

)
e−i(ωB+ωC)t (1.27)

Since 〈〈VA;VB, VC〉〉ωB ,ωC and 〈〈VA;VC , VB〉〉ωC ,ωB multiply the same factors we may – without

loss of generality – impose the symmetry requirement that

〈〈VA;VB, VC〉〉ωB ,ωC = 〈〈VA;VC , VB〉〉ωC ,ωB (1.28)

Similarly we require the following identities between cubic response functions:

〈〈VA;VB, VC , VD〉〉ωB ,ωC ,ωD = 〈〈VA;VB, VD, VC〉〉ωB ,ωD,ωC

= 〈〈VA;VC , VB, VD〉〉ωC ,ωB ,ωD

= 〈〈VA;VC , VD, VB〉〉ωC ,ωD,ωB

= 〈〈VA;VD, VB, VC〉〉ωD,ωB ,ωC

= 〈〈VA;VD, VC , VB〉〉ωD,ωC ,ωB (1.29)

To make a connection between the response functions in Eq. (1.26) and the quasi-energy entering

the time-dependent Hellmann-Feynman theorem in Eq. (1.25), we multiply Eq. (1.26) by e−iωAt

and take the time-average:{〈
0̃ |VA| 0̃

〉
e−iωAt

}
T

= 〈o |VA| o〉 δωA,0 +
∑′

B

εB〈〈VA;VB〉〉ωBδωA+ωB ,0

+
1

2!

∑′

B,C

εBεC〈〈VA;VB, VC〉〉ωB ,ωCδωA+ωB+ωC ,0

+
1

3!

∑′

B,C,D

εBεCεD〈〈VA;VB, VC , VD〉〉ωB ,ωC ,ωDδωA+ωB+ωC+ωD,0 + · · · (1.30)

where we have used that
1

T

∫ T

0
eiωtdt = δω,0 (1.31)

In Eqs. (1.30) and (1.31) we have generalized the Kroneker delta to encompass real numbers to

obtain a compact notation,

δω,0 =

1 if ω = 0

0 if ω 6= 0
(1.32)

Combining Eqs. (1.25) and (1.30) we obtain a connection between the quasi-energy and the

response functions:
dQ
dεA

= 〈o |VA| o〉 δωA,0 +
∑′

B

εB〈〈VA;VB〉〉ωBδωA+ωB ,0

+
1

2!

∑′

B,C

εBεC〈〈VA;VB, VC〉〉ωB ,ωCδωA+ωB+ωC ,0

+
1

3!

∑′

B,C,D

εBεCεD〈〈VA;VB, VC , VD〉〉ωB ,ωC ,ωDδωA+ωB+ωC+ωD,0 + · · · (1.33)
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1.4 Response functions

To adapt to standard notation in the following we now rename the operators VA = A, VB = B,

etc. Using the symmetry relations in Eqs. (1.28) and (1.29) it follows from Eq. (1.33) that

response functions may be identified as perturbation strength derivatives of the quasi-energy

evaluated at zero perturbation strengths:

〈〈A;B〉〉ωB =
d2Q

dεAdεB

∣∣∣∣
{ε}=0

≡ QAB ; ωA = −ωB (1.34a)

〈〈A;B,C〉〉ωB ,ωC =
d3Q

dεAdεBdεC

∣∣∣∣
{ε}=0

≡ QABC ; ωA = −ωB − ωC (1.34b)

〈〈A;B,C,D〉〉ωB ,ωC ,ωD =
d4Q

dεAdεBdεCdεD

∣∣∣∣
{ε}=0

≡ QABCD ; ωA = −ωB − ωC − ωD (1.34c)

where {ε} refers to the complete set of perturbation strengths, and where we have introduced a

compact notation for perturbation strength derivatives evaluated a zero perturbation strengths.

Since only the time-dependent Hellmann-Feynman theorem in Eq. (1.25) and the response func-

tion definition in Eq. (1.26) have been used to derive the response function identifications in

Eq. (1.34), these relations are valid in any variational wave function model and not only in exact

theory.

The response functions may be written in the so-called sum-over-states expressions as [11, 13]:

〈〈A;B〉〉ωB = P (A,B)
∑
i

AoiBio

ωB − ωi
=
∑
i

(
AoiBio

ωB − ωi
− BoiAio

ωB + ωi

)
(1.35a)

〈〈A;B,C〉〉ωB ,ωC = −P (A,B,C)
∑
ij

AoiB̃ijCjo

(ωA + ωi)(ωC − ωj)
(1.35b)

〈〈A;B,C,D〉〉ωB ,ωC ,ωD = P (A,B,C,D)

[
−
∑
ijk

AoiB̃ijC̃jkDko

(ωA + ωi)(ωC + ωD − ωj)(ωD − ωk)

+
∑
ij

AoiBio

ωB − ωi
CojDjo

(ωC + ωj)(ωD − ωj)

]
(1.35c)

where the summations i, j, k run over all excited states (not the ground state | o〉) in the system,

and where we have introduced a compact notation for matrix transition elements,

Boi = 〈o |B|i〉; B̃ij = 〈i|B|j〉 − 〈o |B| o〉δij (1.36)

The permutation operators in Eq. (1.35) create all possible permutations of the operator-

frequency indices – e.g., if f(A,B) and g(A,B,C) are functions of the operators and corre-

sponding frequencies then:

P (A,B)f(A,B) = f(A,B) + f(B,A) (1.37a)

P (A,B,C)g(A,B,C) = g(A,B,C) + g(A,C,B) + g(B,A,C)

+ g(B,C,A) + g(C,A,B) + g(C,B,A) (1.37b)

For the linear response function in Eq. (1.35a) we have inserted ωB=−ωA in the second equality

for future reference.
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1.5 Residues of response functions

From the spectral representations of the linear, quadratic, and cubic response functions given in

Eq. (1.35), it is seen that the response functions have first-order poles when one of the external

frequencies is identical to an excitation energy ωn of the unperturbed system. The corresponding

residues provide information about various transition matrix elements of the system. From

Eq. (1.35a) we obtain the single residue of the linear response function

lim
ωB→ωn

(ωB − ωn)〈〈A;B〉〉ωB = AonBno (1.38)

which thus contains information about the transition matrix elements 〈o |A|n〉 and 〈n |B| o〉. For
example, if A and B are electric dipole operators, the residue in Eq. (1.38) yields a component

of the one-photon absorption strength tensor for the | o〉→|n〉 transition.
For future reference let us also consider the residue of the quadratic response function in

Eq. (1.35b) at ωC=ωn:

lim
ωC→ωn

(ωC − ωn)〈〈A;B,C〉〉ωB ,ωC = −
[
P (A,B)

∑
j

AojB̃jn

ωA + ωj

]
Cno (1.39)

When A, B, and C are components of the electric dipole operator, the expression inside [. . .]

of Eq. (1.39) equals a component of the two-photon transition amplitude tensor [13], as will be

detailed in Chapter 6.

1.6 Response equations

Let us now discuss the structure of the response equations that need to be solved in order to

determine the response functions. We assume that the variation principle in Eq. (1.23) holds, but

we make no assumptions about the parameterization of the |0̃〉 state. The perturbed molecular

system is described in terms of a set of response parameters x(t), which are expanded in orders

of the perturbation,

x(t) = x(0) + x(1)(t) + x(2)(t) + . . . (1.40)

where x(0) are the optimized wave function parameters for the unperturbed system.

The response parameters may be expanded in terms of the different frequency components

and operators [analogously to the Fourier expansion of V (t) in Eq. (1.18)],

x(1)(t) =
∑
B

εBx
Be−iωBt (1.41a)

x(2)(t) =
1

2

∑
B,C

εBεCx
BCe−iωBCt (1.41b)

. . .

x(n)(t) =
1

n!

∑
B1B2...Bn

εB1εB2 . . . εBnx
B1B2...Bne−iωB1B2...Bn t (1.41c)

where ωBC=ωB+ωC and ωB1B2...Bn=ωB1+ωB2+ . . .+ωBn . The response parameters are as-

sumed to be symmetric, for example, xBC = xCB.
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1.7 Elimination rules for response functions

To determine equations for the response parameters we consider the stationary condition in

Eq. (1.23) for a specific variation in x(t):

∂Q
∂x

= 0 (1.42)

Differentiating Eq. (1.42) with respect to the perturbation strengths εB1 , εB2 , . . . , εBn and eval-

uating the resulting expression at {ε} = 0, we obtain an equation for the n’th order response

parameter xB1B2...Bn :
dn

dεB1dεB2 . . . dεBn

(
∂Q
∂x

)∣∣∣∣
{ε=0}

= 0 (1.43)

Using Eq. (1.43) and introducing the short-hand notations

Qk,0 =
∂kQ
∂xk

∣∣∣∣
{ε=0}

(1.44a)

Qk,B1B2...Bn =
∂k+nQ

∂xk∂εB1∂εB2 . . . ∂εBn

∣∣∣∣
{ε=0}

(1.44b)

the response equations up to second order may be written as

Q1,0 = 0 (1.45a)

Q2,0xB +Q1,B = 0 (1.45b)

Q2,0xBC +Q2,BxC +Q2,CxB +Q3,0xBxC +Q1,BC = 0 (1.45c)

Eq. (1.45a) is simply the variation principle for the energy of the unperturbed system, δE = 0,

and Eqs. (1.45b) and (1.45c) determine the first and second order response parameters, respec-

tively. We note that the highest-order response parameter always enters in combination with

the quasi-energy Hessian Q2,0, and therefore the n’th order response equation for xB1B2...Bn may

be written in the form:

Q2,0xB1B2...Bn = gB1B2...Bn (1.46)

where the right-hand side vector gB1B2...Bn only contains response parameters of order n−1 and

below. Hence, by solving for the xB1 , xB1B2 , . . ., xB1B2...Bn parameters successively, substituting

the lower-order parameters into the right-hand sides of higher-order equations, the full set of

response parameters may be generated.

1.7 Elimination rules for response functions

The time-consuming step in molecular property calculations is the iterative solution of response

equations. Thus, to evaluate molecular properties in an efficient manner, the underlying struc-

ture of the quasi-energy derivatives must be exploited to minimize the number of response

equations that needs to be solved. For a variational quasi-energy, Wigner’s 2n+1 rule [29] may

in general be applied, according to which the (2n+1)th quasi-energy derivative can be evaluated

from response parameters up to order n – i.e., all response parameters of order n+1 and above
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may simply be omitted from the expression for the (2n+1)th order quasi-energy derivative since

they multiply zero.

When molecular properties are evaluated, the number of components in the different classes

of perturbations may differ significantly. In particular, for certain classes of perturbations, the

number of perturbations is independent of the size of the molecule (e.g., homogeneous electric or

magnetic fields); for other classes, the number of perturbations is proportional to the size of the

molecule (e.g., nuclear displacements or nuclear magnetic moments). These perturbations are

denoted intensive and extensive, respectively. In general the extensive perturbations have many

more components than the intensive perturbations. For reasons of efficiency, it is therefore

better to reduce the order of the responses equations that must be solved for the extensive

perturbations, rather than to treat the extensive and intensive perturbations on an equal footing

by using the standard 2n+1 rule [29]. We now describe how this can be accomplished for

variational (Section 1.7.1) and nonvariational (Section 1.7.2) quasi-energies.

1.7.1 Variational quasi-energies

Before discussing a generalmth order quasi-energy derivative (response function), let us consider

as a special case the second quasi-energy derivative in Eq. (1.34a) (the linear response function):

QAB = Q0,AB +Q1,AxB + (Q2,0xB +Q1,B)xA +Q1,0xAB (1.47)

where we have used the short-hand notations in Eq. (1.44) and the response parameter expan-

sions in Eq. (1.41). From this expression, we may eliminate the term involving xAB since it

multiplies the zero-order stationary condition in Eq. (1.45a). Furthermore, xA may be elimi-

nated since it multiplies the first-order response equation for xB in Eq. (1.45b). The second-order

quasi-energy derivative may therefore be written in the simplified form

QAB = Q0,AB +Q1,AxB (1.48)

Note that xB cannot be eliminated from this expression since – by eliminating the terms in

Eq. (1.47) involving xA – we have also removed the term Q2,0xAxB, such that xB no longer

multiplies a stationary condition (Q2,0xA +Q1,A). Alternatively, we could have eliminated xB

while retaining xA in Eq. (1.47).

The above discussion illustrates how we may eliminate certain response parameters from the

quasi-energy derivatives but not all independently. The removal of xA precludes the removal of

xB and vice versa. This is an example of a much more general elimination result described in

paper [1], which we now summarize.

Consider a general mth order quasi-energy derivative QB1...Bm . The expression for QB1...Bm

– obtained by straightforward differentiation of the quasi-energy Q with respect to the per-

turbation strengths εB1 , . . ., εBm – will contain a plethora of different terms containing first

to mth order response parameters. We now focus on a response parameter xB1...Bp of order p

(1≤p≤m) entering QB1...Bm . In paper [1] the underlying structure of the terms involving xB1...Bp

is investigated and the following result is obtained:
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• Any response parameter xB1...Bp (1≤p≤m) may be eliminated from the expression for

QB1...Bp...Bm , but this precludes the further elimination of all response parameters involving

indices p+1, . . . ,m.

This result follows from the variation condition in Eq. (1.42) and is the crux for identifying

different elimination schemes.

To be more specific with respect to the nature of the perturbations let us now consider the

particular mth order quasi-energy derivative QA1...AkB1...Bm−k , where A1 . . . Ak label k extensive

perturbations, while B1 . . . Bm−k label m−k intensive perturbations. In this case it is advan-

tageous to eliminate as many response parameters referencing the computationally expensive

extensive response parameters as possible. Using this strategy in combination with the general

elimination statement for a response parameter xB1...Bp given above, it is possible to derive the

so-called k2n+1 rule for a variational energy [1]:

• When evaluating QA1...AkB1...Bm−k , all x parameters of orders above n=bk/2c in the

A1 . . . Ak indices may be omitted from the expression for QA1...AkB1...Bm−k , where bk/2c is
the largest integer less than or equal to k/2. In other words, wave-function parameters to

order n in the A1 . . . Ak indices determine energy derivatives to order 2n+1 within these

indices.

The k2n+1 rule gives the computationally simplest expression for an mth order molecular

property containing k≤m extensive perturbations andm−k intensive perturbations. By treating

all perturbations on an equal footing and letting k=m, the k2n+1 rule reduces to the standard

2n+1 rule [29], which states that, for a variational quasi-energy, the (2n+1)th order quasi-energy

derivative can be determined from response parameters up to order n.

When k is even, direct application of the k2n+1 rule dictates that parameters of order k/2+1

and above in the extensive indices may be eliminated from the expression for the quasi-energy

derivative. A closer inspection [1] shows, however, that some parameters of order k/2 may also

be eliminated. For example, for the quasi-energy derivative QAB with k=m=2, straightforward

application of the 22n+1 rule (equivalent to the standard 2n+1 rule in this case) only dictates

that the term involving the second order parameters xAB can be eliminated. However, either xA

or xB may also be eliminated as discussed in connection with Eq. (1.47) above. More generally,

when k is even it is possible to eliminate half the parameters of order k/2. We use this freedom to

eliminate as many response parameters as possible referencing the first k/2 perturbations in the

set of extensive perturbations when defining the k2n+1 rule for an even number of perturbations.

For a linear response function with k=2 we thus eliminate xA rather than xB.

In Table 1.1 we have collected the response parameters needed to determine up to fourth order

quasi-energy derivatives using different elimination schemes. We note that for a variational quasi-

energy the 12n+1 and 22n+1 rules are equivalent. In general, Table 1.1 gives the computationally

most tractable expressions for linear, quadratic, and cubic response functions with k extensive

perturbations and m−k intensive perturbations. The cases with m=k are equivalent to the
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Table 1.1: Variational quasi-energies. Response parameters needed to determine up to fourth
order quasi-energy derivatives QA (m = 1), QAB (m = 2), QABC (m = 3), and QABCD (m = 4)
using the k2n+1 elimination rules.

k = 1 k = 2 k = 3 k = 4

m = 1 No responses — — —

m = 2 xB xB — —

m = 3 xB , xC , xBC xB , xC , xBC xA, xB , xC —

m = 4 xB , xC , xD xB , xC , xD xA, xB , xC , xD xA, xB , xC , xD

xBC , xBD, xCD, xBCD xBC , xBD, xCD, xBCD xAD, xBD, xCD xBC , xBD, xCD

standard 2n+ 1 rule [29] with the modification that for even m values half of the (m/2)th order

parameters have also been eliminated. The 12n+1 rule corresponds to eliminating all response

parameters referencing perturbation A. For example, form=4 the xA parameters enter when the

42n+1 rule is applied, whereas these parameters are effectively replaced by the xBCD parameters

when the 12n+1 rule is used. We note that the k2n+1 rules for the same m and different k’s

in Table 1.1 – where a given response parameters is eliminated at the expense of determining

another response parameter – may be viewed as different realizations of the Handy-Schaefer

turn-over-rule [30].

1.7.2 Nonvariational quasi-energies

The elimination rules discussed in Section 1.7.1 may be generalized to nonvariational quasi-

energies, where the response parameters x do not satisfy the stationary condition in Eq. (1.42),

but rather some subsidiary relation

e(ε, x) = 0, for all ε (1.49)

This relation may, for example, represent the amplitude equations in coupled cluster theory.

To retain the variational formulation also in such cases, it is convenient to construct a quasi-

energy Lagrangian [31]

L(ε, x, x̄) = Q(ε, x) + x̄e(ε, x) (1.50)

where x̄ is the collection of Lagrange multipliers associated with the constraints. To simplify

the notation we omit the explicit dependencies on ε, x, and x̄ in the following equations. The

Lagrangian L is by construction variational in the multipliers as well as in the original response

parameters:

∂ L
∂x̄

= e = 0 (1.51a)

∂ L
∂x

=
∂Q
∂x

+ x̄
∂e

∂x
= 0 (1.51b)

The variation with respect to x̄ in Eq. (1.51a) gives the equation for x in Eq. (1.49) and is

trivially satisfied, whereas the variation in x in Eq. (1.51b) yields a set of linear equations
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Table 1.2: Nonvariational quasi-energies. Response parameters and multipliers needed to deter-
mine up to fourth order Lagrangian quasi-energy derivatives LA (m = 1) LAB (m = 2), LABC

(m = 3), and LABCD (m = 4) using the k2n+1,2n+2 elimination rules.

k = 1 k = 2 k = 3 k = 4

m = 1 x̄ — — —

m = 2 xB , x̄, x̄B xA, xB , x̄ — —

m = 3 xB , xC , xBC xA, xB , xC xA, xB , xC —

x̄, x̄B , x̄C , x̄BC xAC , xBC , x̄, x̄C x̄, x̄A, x̄B , x̄C

m = 4 xB , xC , xD xA, xB , xC , xD xA, xB , xC , xD xA, xB , xC , xD

xBC , xBD, xCD, xBCD xAC , xAD, xBC , xBD xAD, xBD, xCD xAB , xAC , xAD

x̄, x̄B , x̄C , x̄D xCD, xACD, xBCD x̄, x̄A, x̄B , x̄C , x̄D xBC , xBD, xCD

x̄BC , x̄BD, x̄CD, x̄BCD x̄, x̄C , x̄D x̄AD, x̄BD, x̄CD x̄, x̄A, x̄B , x̄C , x̄D

that determine the multipliers. From this Lagrangian, response functions may be determined

as perturbation-strength derivatives evaluated at {ε}=0, equivalent to the variational case in

Eq. (1.34):

〈〈A;B〉〉ωB =
d2L

dεAdεB

∣∣∣∣
{ε}=0

≡ LAB ; ωA = −ωB (1.52a)

〈〈A;B,C〉〉ωB ,ωC =
d3L

dεAdεBdεC

∣∣∣∣
{ε}=0

≡ LABC ; ωA = −ωB − ωC (1.52b)

〈〈A;B,C,D〉〉ωB ,ωC ,ωD =
d4L

dεAdεBdεCdεD

∣∣∣∣
{ε}=0

≡ LABCD ; ωA = −ωB − ωC − ωD (1.52c)

Similar to the treatments of the variational quasi-energy in Section 1.7.1, we may differentiate

the quasi-energy Lagrangian in Eq. (1.50) and subsequently apply the variational criteria in

Eq. (1.51) to eliminate response parameters and Lagrange multipliers to minimize the total

number of response and multiplier equations to be solved. This is done in paper [1], and here

we only provide the main result:

• The k2n+1,2n+2 rule: When evaluating LA1...AkB1...Bm−k the x and x̄ parameters may be

eliminated in accordance with the 2n+1 and 2n+2 rules, respectively, within the A1 . . . Ak

indices. In other words, response parameters (Lagrange multipliers) to order n in the

ab . . . k indices determine quasi-energy derivatives to order 2n+1 (2n+2) within these

indices.

When k=m, the k2n+1,2n+2 rule reduces to Wigner’s 2n+1 rule [29] for the response parame-

ters and the 2n+2 rule for the Lagrange multipliers [32]. The elimination rule for the multipliers

(2n+2) is somewhat stronger than the one for the response parameters (2n+1) because the

multipliers occur only linearly in the Lagrangian in Eq. (1.50).

Table 1.2 gives an overview of the response parameters and multipliers required to determine

up to fourth order Lagrangian derivatives using the k2n+1,2n+2 rules for different k’s. In general,
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Table 1.2 gives the computationally simplest expressions for Lagrangian derivatives involving k

extensive and m−k intensive response parameters.

1.7.3 Concluding remarks for elimination rules

Considering the quasi-energy derivative (response function) QA1...AkB1...Bk−m for a variational

quasi-energy – where A1 . . . Ak and B1 . . . Bk−m denote extensive and intensive perturbations,

respectively – the k2n+1 rule gives the computationally simplest expression by minimizing the

number of response equations to be solved involving the extensive parameters. Similarly, for a

nonvariational quasi-energy, the k2n+1,2n+2 gives the computationally most tractable expression.

The reduction in terms of response equations for the extensive perturbations occurs at the

expense of having to calculate higher-order response parameters for the intensive perturbations.

Except for the smallest systems, however, the associated increase in the number of intensive

parameters is insignificant compared with the reduction in the number of extensive parameters.

This leads to an overall reduction in computational effort. We also note that the relative com-

putational savings gained by eliminating extensive response parameters increase with molecular

system size, and therefore the k2n+1 and k2n+1,2n+2 rules are particularly important for large

molecular systems.
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Chapter 2

Density matrix-based self-consistent

field response theory formulation

This chapter describes the work presented in paper [2].

2.1 Introduction

The focus in theoretical and experimental chemistry has in the last few decades shifted to-

wards larger molecular systems. For the treatment of time-dependent phenomena of large

molecules, the method of choice today is time-dependent Kohn–Sham density functional theory

(KS-DFT) [33–38] (including hybrid methods and HF) which offers reasonable accuracy at a

low computational cost. In order to facilitate computations on increasingly larger systems, it is

important that the computational time scales only linearly with the size of the system.

In conventional KS methods, the determination of the molecular orbital (MO) coefficients

requires a diagonalization of the Fock matrix, a procedure that scales cubically with the size of

the system. To obtain linear scaling, it is in general advantageous to abandon the MO description

and work solely in terms of the density matrix in the atomic orbital (AO) representation, which

becomes sparse for large molecular systems. Thus, by deriving working equations in the AO

basis, linear scaling can be achieved when the molecular system becomes sufficiently large and

sparse matrix algebra is used. Linear-scaling implementations have been developed for the

different steps involved in the determination of the KS energy, i.e., the evaluation of the Fock

matrix [39–43], the construction of the density matrix (see the reviews in Refs. [44, 45] and

references therein), and the evaluation of the exchange-correlation terms [46, 47]. Linear-scaling

AO-based KS-DFT response theory has been proposed by various authors [2, 48–55].

In this chapter we summarize the density-matrix based quasi-energy formulation of KS re-

sponse theory developed in paper [2]. The advantage of this formulation compared to existing

AO-based response formulations [48–55] is that static and frequency-dependent perturbations,

as well as standard basis sets and perturbation-dependent basis sets (PDBSs), are treated on

an equal footing. This is to be compared with traditional approaches, where derivations of
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static molecular properties using PDBSs (e.g., molecular gradients and Hessians and magnetic

properties calculated using so-called London atomic orbitals [56–58]) and frequency-dependent

properties using standard basis sets have been performed independently of each other. In par-

ticular, the uniform description of static and time-dependent perturbations presented here also

inherently includes the use of frequency-dependent PDBSs, which has been employed in some

recent works [3, 59–61].

The presented derivation is a generalization of the developments by Helgaker et al. [48, 49],

who introduced an unconstrained exponential parameterization of the density matrix in the

AO basis and used this parameterization to determine response functions for standard basis

sets. The exponential parameterization was also extended to PDBSs, but only for a static

perturbation [50].

This chapter is organized as follows. In Section 2.2 we discuss the challenges that arise

when attempting to apply the quasi-energy formulation within a density matrix framework. In

Section 2.3 we present the working equation for the quasi-energy gradient, from which expressions

for response functions in terms of perturbed density matrices may straightforwardly be obtained.

The parameterization of the perturbed density matrix is outlined in Section 2.4, and Section 2.5

is devoted to response functions. Section 2.6 contains some concluding remarks.

2.2 Quasi-energy response theory in a density-matrix formula-

tion

For the quasi-energy of Eq. (1.14), only the ket state is subject to time differentiation. The HF

or KS quasi-energy is therefore not symmetric with respect to operations on the bra and ket

states:

Q(t) =
〈

S̃CF |H − i ∂t| S̃CF
〉

(2.1)

where |S̃CF〉 is the time-dependent (phase-isolated) self-consistent field (SCF) single-determinant

state, which may refer to a HF or a KS determinant.

In particular, the second term in Eq. (2.1) may be evaluated as〈
S̃CF |−i ∂t| S̃CF

〉
= −i

∑
J

∫
φ∗J(r, t)φ̇J(r, t) dr (2.2)

where the summation runs over all occupied spin MOs φ (denoted with index J). Note that

only the ket orbital φJ(r, t) is differentiated with respect to time. The electron density ρ(r, t),

ρ(r, t) =
∑
J

φ∗J(r, t)φJ(r, t) (2.3)

and its time derivative,

ρ̇(r, t) =
∑
J

(
φ̇∗J(r, t)φJ(r, t) + φ∗J(r, t)φ̇J(r, t)

)
(2.4)
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2.2 Quasi-energy response theory in a density-matrix formulation

are symmetric in φ∗J(r, t) and φJ(r, t). Given that the time derivative term of the quasi-energy

in Eq. (2.2) contains only the second term in the time-differentiated electron density, it is not

straightforward to express the quasi-energy in terms of ρ(r, t) and ρ̇(r, t).

Let us now consider the matrix representation of ρ(r, t) in the AO basis. By expanding the

MOs in AOs χµ, which may depend on the external (possibly time-dependent) perturbation,

φJ(r, t) =
∑
µ

CµJ(t)χµ(r, t) (2.5)

we obtain

ρ(r, t) =
∑
µν

Dµν(t)χ∗µ(r, t)χν(r, t) (2.6)

where we have introduced the density matrix D with elements

Dµν(t) =
∑
J

C∗µJ(t)CνJ(t) (2.7)

The time-derivative of ρ(r, t) may thus be expressed as

ρ̇(r, t) =
∑
µν

(
Ḋµν(t)χ∗µ(r, t)χν(r, t) +Dµν(t)χ̇∗µ(r, t)χν(r, t) +Dµν(t)χ∗µ(r, t)χ̇ν(r, t)

)
(2.8)

with contributions from the density matrix as well as the AOs.

Even though the SCF quasi-energy cannot be expressed in terms of ρ(r, t) and its time

derivative (or, equivalently, in terms of D and its time derivative Ḋ), it is demonstrated in

paper [2] that the perturbation-strength derivative of the time-averaged SCF quasi-energy can

be written as a function of D and Ḋ:
dQ
dεA

=
dQ(D, Ḋ)

dεA
≡ QA(D, Ḋ) (2.9)

The quasi-energy derivative QA(D, Ḋ) (whose explicit form is given in Section 2.3) contains all

information needed to determine response functions by further differentiation with respect to

the perturbation strengths as in Eq. (1.34):

〈〈A;B〉〉ωB =
dQA(D, Ḋ)

dεB

∣∣∣∣
{ε}=0

, ωA = −ωB (2.10)

〈〈A;B,C〉〉ωB ,ωC =
d2QA(D, Ḋ)

dεBdεC

∣∣∣∣
{ε}=0

, ωA = −ωB − ωC (2.11)

and so on. The quasi-energy derivativeQA(D, Ḋ) therefore provides an alternative starting point

to the quasi-energy for identifying response functions in terms of perturbed density matrices.

For future convenience we extend the notation in Eq. (2.9) and adopt the following notation

for the derivatives of a general function or matrix f :

fB1...Bm =
dmf

dεB1 . . . dεBm

(2.12)

fn,B1...Bm =
∂n+mf

∂(DT)n∂εB1 . . . ∂εBm

(2.13)

with special cases f0,B1...Bm = ∂mf/∂εB1 . . . ∂εBm and fn,0 = ∂nf/∂(DT)n. In some cases, the

derivatives are evaluated at zero perturbation strengths, but this will always be clear from the

context.
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2.3 The quasi-energy gradient

When working with general time- and perturbation-dependent basis functions χµ, it is convenient

to introduce the generalized KS energy E [2],

E = tr
(
h + V + 1

2Gη(D)− i
2T
)
D + Exc[ρ] + hnuc (2.14)

where the matrices are evaluated in the atomic spin orbital basis using (in general) perturbation-

dependent basis sets χ at nonzero field strengths. In Eq. (2.14) h is the one-electron matrix

without the external perturbation, V is the perturbation matrix, Gη(D) is the two-electron

matrix containing a Coulomb contribution and an η-scaled exchange contribution, and T is an

anti-Hermitian time-differentiated overlap matrix,

hµν =
〈
χµ
∣∣−1

2∇
2 −

∑
K
ZKr

−1
K

∣∣χν〉 (2.15)

Vµν = 〈χµ |V (t)|χν〉 (2.16)

Gηµν(D) =
∑
αβ

Dβα(gµναβ − ηgµβαν) (2.17)

gµναβ =

∫∫
χ∗µ(x1)χ∗α(x2)χν(x1)χβ(x2)

r12
dx1 dx2 (2.18)

Tµν = 〈χµ|χ̇ν〉 − 〈χ̇µ|χν〉 (2.19)

where the various distances and charges were defined in connection with Eq. (1.4), and where

the integration variable x refers to both spatial r and spin coordinates. Exc[ρ] is the exchange-

correlation functional of the electron density ρ = ρ(r, t) in Eq. (2.3) and includes the remaining

part of the energy contribution. It thus contains the effects of electron correlation and corrects

the error made in the kinetic energy by evaluating it in terms of a single Slater determinant.

Finally, hnuc is the nuclear-nuclear repulsion term in Eq. (1.4d).

In the notation of Eqs. (2.12) and (2.13), the quasi-energy gradient QA = QA(D, Ḋ) may be

written in terms of partial derivatives of the generalized KS energy E0,A and a reorthonormal-

ization term tr SAW [2]

QA = E0,A − tr SAW (2.20)

where E0,A is given by,

E0,A = tr
(
hA + VA +

1

2
GA(D)− i

2TA
)
D + E0,A

xc [ρ] + hAnuc (2.21)

because h0,A = hA, etc. Note that only the two-electron integrals gµναβ (and not D) are

differentiated with respect to εA in GA(D). The SA matrix in Eq. (2.20) is the derivative of the

AO overlap matrix

Sµν = 〈χµ|χν〉 (2.22)

and W is a generalized energy-and-frequency-weighted density matrix,

W = DFD +
i

2

(
ḊSD−DSḊ

)
(2.23)
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2.4 Parameterization of the time-dependent density matrix

where F is the generalized time-dependent Fock matrix

F = E1,0 = h + G(D) + V − i
2T + Fxc (2.24)

The functional derivative matrix Fxc = E1,0
xc is given by

Fxc,µν =

∫
χ∗µχνvxc(r, t)dx (2.25)

where the exchange-correlation potential vxc(r, t)

vxc(r, t) =
δExc
δρ(r)

∣∣∣∣
ρ(r)=ρ(r,t)

(2.26)

have been introduced. In Eq. (2.26) the electron density is evaluated at ρ(r) = ρ(r, t). This is

the adiabatic approximation [36–38], where it is assumed that the exchange-correlation potential

only depends on time through the electron density. We note that Eq. (2.20) reduces to the

molecular gradient in the AO basis [62] in the time-independent limit.

If the perturbation A is not described using perturbation-dependent basis sets, most of the

terms in Eq. (2.20) vanish and the following simple expression is obtained,

QA = tr VAD (2.27)

which represents the expectation value of the one-electron perturbation operator.

The quasi-energy gradient in Eq. (2.20) provides the starting point for generating response

functions by further differentiation, according to Eq. (2.10) and (2.11). However, before con-

sidering response functions in Section 2.5, we now discuss the parameterization of the density

matrix.

2.4 Parameterization of the time-dependent density matrix

The density matrix for a single-determinant SCF state must satisfy the trace, Hermiticity, and

idempotency conditions [63]

tr DS = N (2.28)

D† = D (2.29)

DSD = D (2.30)

where N is the number of electrons in the molecular system. Whereas the trace and Hermiticity

conditions are automatically satisfied in the formulation given below, the idempotency relation

requires special attention. Furthermore, the time-dependent density matrix must be a solution

to the time-dependent SCF (TDSCF) matrix equation [2],(
F− i

2
S∂t

)
DS−

(
SDF +

i

2
∂t
(
SD
)
S
)

= 0 (2.31)

In the absence of a time-dependent perturbation Eq. (2.31) reduces to the well-known stationary

conditions F0D0S = SD0F0 of SCF theory [63], where F0 and D0 are the Fock and density

matrices for the unperturbed system (the subscript 0 referring to the unperturbed SCF state).
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The density matrix is expanded in orders of the perturbation,

D = D0 + D(1) + D(2) + · · · (2.32)

where the perturbed density matrices are written in terms of their frequency-operator compo-

nents following Eq. (1.41),

D(1) =
∑
B

εBDBe−iωBt (2.33)

D(2) =
1

2

∑
BC

εBεCDBCe−iωBCt (2.34)

The perturbed density matrices are partitioned into so-called particular and homogeneous com-

ponents. The particular component is chosen such that the time-dependent density matrix sat-

isfies the idempotency relation, whereas the homogeneous component ensures that the density

matrix is a solution to the TDSCF equation.

To exemplify the partitioning scheme for the perturbed density matrices, let us consider the

first-order perturbed density matrix DB, which is decomposed into a particular and a homoge-

neous component

DB = DB
P + DB

H (2.35)

The inhomogeneous equation is the first-order idempotency condition obtained by differentiating

Eq. (2.30) with respect to εB and evaluating at zero perturbation strengths,

DBS0D0 + D0S0D
B −DB = NB, NB = −D0S

BD0 (2.36)

A particular solution DB
P to this equation is given by:

DB
P = NBS0D0 + D0S0N

B −NB = −D0S
BD0 (2.37)

The homogeneous component DB
H is parameterized in terms of an unknown matrix XB in the

form,

DB
H = D0S0X

B −XBS0D0 (2.38)

to ensure that DB
H is a solution to the homogeneous equation associated with Eq. (2.36),

DB
HS0D0 + D0S0D

B
H −DB

H = 0 (2.39)

so that DB in Eq. (2.35) satisfies the idempotency relation to first order. The matrix XB in

the homogeneous component DB
H is now determined such that DB is also a solution to the first-

order TDSCF equation. By differentiating Eq. (2.31) with respect to εB and evaluating at zero

perturbation strengths, the following equation for XB is obtained [2]:

(E[2] − ωBS[2])XB = RB (2.40)

where E[2] and S[2] are generalized Hessian and metric matrices, respectively. As Eq. (2.40)

is solved iteratively, it is not necessary to construct these matrices explicitly; it is sufficient to
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2.4 Parameterization of the time-dependent density matrix

know their products with a general matrix X:

E[2]X = E2,0(XS0D0 −D0S0X)D0S0 − S0D0E
2,0(XS0D0 −D0S0X)

+ F0(XS0D0 −D0S0X)S0 − S0(XS0D0 −D0S0X)F0 (2.41)

S[2]X = S0(XS0D0 −D0S0X)S0 (2.42)

where the transformation of E2,0 = ∂2E/∂(DT)2 on a general matrix M can be written in the

form

E2,0(M) = Gη(M) + Gxc(M) (2.43)

where Gη(M) is defined by Eq. (2.17) and the exchange-correlation contribution is

Gxcµν(M) =
∑
αβ

Mβα

∫
χ∗µ(r)χν(r)

(∫
χ∗α(r1)χβ(r1)

δvxc
δρ(r1)

dx1

)
dx (2.44)

The right-hand side matrix of the response equations in Eq. (2.40) is given by

RB =
[
E1,B + E2,0(DB

P )
]
D0S0 +

(
F0 − ωB

2 S0

)
(DB

PS0 + D0S
B)

− S0D0

[
E1,B + E2,0(DB

P )
]
− (S0D

B
P + SBD0)

(
F0 − ωB

2 S0

)
(2.45)

We note that the particular component DB
P only depends on the zeroth-order density matrix

D0, whereas the homogeneous component DB
H requires the solution of the response equation in

Eq. (2.40).

The first-order analysis given above may be generalized to arbitrary orders, decomposing the

mth-order density matrix into particular and homogeneous components:

DB1...Bm = DB1...Bm
P + DB1...Bm

H (2.46)

The mth-order idempotency condition can be written as

DB1...BmSD0 + D0SDB1...Bm −DB1...Bm = NB1...Bm (2.47)

where the inhomogeneity NB1...Bm contains perturbed density matrices of order less than m.

The mth order particular solution matrix DB1...Bm
P has the structure of Eq. (2.37), i.e.,

DB1...Bm
P = NB1...BmS0D0 + D0S0N

B1...Bm −NB1...Bm (2.48)

The mth-order homogeneous component DB1...Bm
H is parameterized as in Eq. (2.38),

DB1...Bm
H = D0SXB1...Bm −XB1...BmSD0 (2.49)

where XB1...Bm is determined so that the total density matrix in Eq. (2.46) satisfies the TDSCF

equation to order m, by solving the mth-order response equation:[
E[2] − ωB1...BmS[2]

]
XB1...Bm = RB1...Bm (2.50)

where ωB1...Bm=ωB1+ . . .+ωBm . Eq. (2.50) has the same form as the first-order equation in

Eq. (2.40), with RB1...Bm containing only lower-order density matrices. Since response equations
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have the same structure to all orders, the solution matrices X can be determined using the same

solver – for example, the linear-scaling solver of Coriani et al. [53], making the calculations

suitable for large molecular systems.

In summary, to determine the mth-order density matrices DB1...Bm , we first construct the

mth-order inhomogeneity NB1...Bm from lower-order density matrices and determine the par-

ticular solutions DB1...Bm
P . Next, the right-hand sides RB1...Bm are constructed from DB1...Bm

P

and lower-order density matrices, followed by the solution of the mth-order response equations

to yield XB1...Bm and the homogeneous components DB1...Bm
H . Finally, the mth order density

matrix DB1...Bm is determined according to Eq. (2.46). We have thus established a recur-

sive procedure for determining perturbed density matrices to arbitrary order, where the use of

(frequency-dependent) PDBSs is an integrated part of the formulation. With the perturbed

density matrices at hand, it is straightforward to evaluate response functions as we now discuss.

2.5 Response functions in terms of perturbed density matrices

Response functions may be identified by differentiation of the quasi-energy gradient in Eq. (2.20)

according to Eqs. (2.10) and (2.11). In the notation of Eq. (2.13), the derivative of the first term

in Eq. (2.20) may be written as (evaluation at zero perturbation strengths implicitly assumed)

dE0,A

dεB
=
∂E0,A

∂εB
+ tr

∂E0,A

∂DT
∂D

∂εB
= E0,AB + tr E1,ADB (2.51)

Including also the derivative of the second term in Eq. (2.20), we obtain the following expression

for the linear response function

〈〈A;B〉〉ωB = QAB = E0,AB + tr E1,ADB − tr SABW0 − tr SAWB (2.52)

According to Eq. (2.24), the differentiated Fock matrix becomes

E1,A = F0,A = hA + GA(D0) + VA − i
2TA + F0,A

xc (2.53)

and, using Eq. (2.23), the W matrices are given by

W0 = D0F0D0, (2.54)

WB = D0F
BD0 + DB

(
F0 + ωB

2 S0

)
D0 + D0

(
F0 − ωB

2 S0

)
DB (2.55)

When the basis set does not depend on the external perturbations A and B, only the con-

tribution involving VA [see Eq. (2.20)] in the second term in Eq. (2.52) contributes, reducing

the linear response function to the simple expression:

〈〈A;B〉〉ωB = tr VADB (2.56)

The quadratic response function in Eq. (2.11) is given by

〈〈A;B,C〉〉ωB ,ωC = QABC

= E0,ABC + tr
(
E1,ACDB + E1,ABDC + E2,A(DB)DC + 2E1,ADBC

)
− tr

(
SABCW0 + SACWB + SABWC + SAWBC

)
(2.57)
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where first-order densities DB and DC , and second-order densities DBC are required to deter-

mine the quadratic response function. This is in accordance with the 12n+1 rule discussed in

Section 1.7, see Table 1.1, where all terms involving response parameters referencing perturba-

tion A are eliminated from the response function expression. It is also possible to obtain an

expression for 〈〈A;B,C〉〉ωB ,ωC that complies with the standard 2n+1 rule, where only first-order

densities DA, DB, and DC are required (the 32n+1 rule using the notation in Table 1.1). This can

be accomplished by constructing a quasi-energy derivative Lagrangian, where the idempotency

relation in Eq. (2.30) and the TDSCF equation in Eq. (2.31) are added as constraints. With

this Lagrangian at hand, it is straightforward to identify a 2n+1 expression for the quadratic

response function as demonstrated in paper [2]. More generally, the elimination rules discussed

in Section 1.7 may be used to obtain a plethora of different expressions for cubic and higher

order response functions. We refer to paper [2] for details.

2.6 Conclusion

We have presented a generalization of response theory at the HF and KS levels of theory to

include (frequency-dependent) PDBSs on the same footing as standard basis sets. The inherent

inclusion of PDBSs is advantageous for many molecular properties – for example for vibrational

circular dichroism spectra, as we discuss in Chapter 3. The derivations are formulated exclusively

in terms of variations in the density matrix in the AO basis with the idempotency relation for the

density matrix as a constraint. We have thus established a framework for calculating response

functions in the AO basis to arbitrary orders. The presented equations are prone to linear scaling

when sparse matrix algebra can be applied.
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Chapter 3

Variational response function

formulation of vibrational circular

dichroism

This chapter describes the work presented in paper [3].

3.1 Introduction

Over the last decade vibrational circular dichroism (VCD) has become an increasingly used

spectroscopic tool [64, 65] and is nowadays one of the most efficient and reliable spectroscopic

techniques to assign the absolute configuration of chiral species. In VCD spectroscopy the dif-

ference in absorption between left and right circularly polarized light is measured for excitations

involving vibrational states.

Molecular theories of VCD have been derived in different ways by several authors [66–71].

Implementations of these formulations involve the determination of wave-function parameters

perturbed with respect to both the nuclear displacements (3N components) and the magnetic

perturbation (3 components), thus requiring the solution of 3N+3 response equations (N being

the number of atoms in the molecule).

In this chapter an alternative formula is discussed, where the atomic axial tensor (AAT) of

VCD is recast as the frequency derivative of a linear response function. Using this alternative

formula only six response equations are solved (rather than 3N+3), namely three for the mag-

netic field responses plus, for each of the magnetic responses, an additional response equation

for the “frequency-perturbed” density.

The formulation described here is particularly advantageous when combined with a compu-

tationally cheaper scheme to determine the vibrational modes and frequencies. For example,

by computing the Hessian with smaller basis sets than used for the VCD tensors (due to the

different basis set requirements), or using mode-tracking approaches for the exact calculation of

normal modes of a pre-selected molecular vibration in a large molecule [72].
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Vibrational circular dichroism

The chapter is organized as follows. In Section 3.2 the relevant VCD quantities are de-

fined, and in Section 3.3 the determination of the AAT in exact response theory is presented.

Section 3.4 describes the evaluation of the AAT using the density matrix-based response for-

mulation of Chapter 2, where all contributions from PDBSs – required both to eliminate the

gauge-origin problem [73, 74] using London orbitals [56, 57] and to account for the dependence

on the Cartesian coordinates of the AOs – are inherently included. Section 3.5 contains some

concluding remarks.

3.2 Definition of VCD quantities

We consider a molecular system described by the Born-Oppenheimer approximation, where the

total wave function is written as a product of the electronic singlet ground state wave function

| o〉 and a nuclear vibrational wave function |v〉 (neglecting translation and rotation). In the

vibrational ground state (all vibrational quantum numbers are zero), the total wave function is

denoted |o0〉. If the nth vibrational degree of freedom (mode) is excited to the lowest excited

vibrational state, the total wave function (still in the electronic ground state) is denoted |o1n〉.
The intensity of the VCD-band for the |o0〉→|o1n〉 transition is determined by the rotational

strength R(o0→ o1n) [66]

R(o0→ o1n) =
∑
α

Im{〈o0|µα|o1n〉〈o1n|mα|o0〉} (3.1)

where µα (α = x, y, z) are the Cartesian components of the electric dipole moment operator and

mα those of the magnetic dipole moment operator. The vibrational electric and magnetic dipole

transition moments are

〈o0|µβ|o1n〉 =
( 1

2ω̃n

) 1
2
∑
I,α

SIα,nP
I
αβ (3.2)

〈o0|mβ|o1n〉 = (2ω̃n)
1
2

∑
I,α

SIα,nM
I
αβ (3.3)

where I runs over the nuclei, ω̃n is the harmonic angular frequency of the nth mode, and SIα,n is

the transformation matrix from Cartesian nuclear displacements to mass-weighted normal mode

displacements Qn, i.e.,

RIα−RIα,eq =
∑
n

SIα,nQn (3.4)

The atomic polar tensor (APT) P Iαβ in Eq. (3.2) is the geometry-derivative of the electric

dipole moment of the electronic ground state evaluated at the equilibrium geometry Req

P Iαβ =

(
∂µooβ
∂RIα

)
eq

, µooβ = 〈o|µβ|o〉 (3.5)

The atomic axial tensor (AAT)M I
αβ in Eq. (3.3) is the derivative of the ground state magnetic

moment with respect to the velocity of the nuclei [70]

M I
αβ =

(
∂moo

β

∂ṘIα

)
eq

, moo
β = 〈o|mβ|o〉 (3.6)

28



3.3 Response function formulation of the AAT

This may be written as a sum of an electronic (IIαβ) and a nuclear (J Iαβ) contribution [66]

M I
αβ = IIαβ + J Iαβ (3.7)

IIαβ =

〈
∂o

∂RIα

∣∣∣∣ ∂o∂Bβ

〉
(3.8)

J Iαβ =
1

4
εαβγZIR

I
γ,eq (3.9)

where Bβ is a magnetic field strength component. Most existing procedures for computing the

VCD rotational strength utilize Eqs. (3.8) and (3.9) for determining the AAT.

The APT may straightforwardly be evaluated as the geometric gradient of the electric dipole

moment (see paper [3] for details), and the main challenge in VCD formulations is therefore to

determine the electronic component of the AAT. In the following we focus solely on obtaining

an efficient expression for IIαβ .

3.3 Response function formulation of the AAT

To determine IIαβ within the response function formalism, it is convenient to introduce the

geometrical gradient operator gIα (electronic part thereof),

gIα =

(
∂VNe

∂RIα

)
eq

(3.10)

where VNe is the nuclei-electron attraction term in Eq. (1.4b). Consider next the linear response

function 〈〈gIα;mβ〉〉ω, which may be written in the sum-over-states expression in Eq. (1.35a),

〈〈gIα;mβ〉〉ω =
∑
j 6=o

(
〈o|gIα|j〉〈j|mβ|o〉

ω − ωj
−
〈o|mβ|j〉〈j|gIα|o〉

ω + ωj

)
= −

∑
j 6=o

2ω

ω2
j − ω2

〈o|gIα|j〉〈j|mβ|o〉 (3.11)

where ωj is the excitation energy from the (electronic) ground state |o〉 to the (electronic) excited

state |j〉. To obtain the last equality in Eq. (3.11) we have assumed that the excited states are

real and used the fact that gIα is a real operator, whereas mβ is an imaginary operator.

The first-order expansion of a state |o〉 in the presence of a (static) magnetic field described

by the perturbation V = −
∑

β Bβmβ is [13]

|o〉 =|o〉0 +
∑
β

∣∣∣∣ ∂o∂Bβ

〉
Bβ + ... (3.12)∣∣∣∣ ∂o∂Bβ

〉
= −

∑
j 6=o
|j〉
〈j|mβ|o〉

ωj
(3.13)

For a nuclear displacement perturbation V =
∑

I,α(RIα −RIα,eq)gIα an equivalent expansion can
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be introduced

|o〉 =|o〉eq +
∑
I,α

∣∣∣∣ ∂o∂RIα

〉
(RIα−RIα,eq) + · · · (3.14)

∣∣∣∣ ∂o∂RIα

〉
=
∑
j 6=o
|j〉〈j|g

I
α|o〉
ωj

(3.15)

Using Eqs. (3.13) and (3.15), the electronic part of the AAT in Eq. (3.8) may be expressed as

IIαβ =

〈
∂o

∂RIα

∣∣∣∣ ∂o∂Bβ

〉
= −

∑
j,k 6=o

〈o|gIα|j〉
ωj

〈j|k〉
〈k|mβ|o〉
ωko

= −
∑
j 6=o

〈o|gIα|j〉〈j|mβ|o〉
ω2
j

(3.16)

Comparing Eq. (3.16) with Eq. (3.11) we obtain the following expression for the AAT,

IIαβ =
1

2

d

dω
〈〈gIα;mβ〉〉ω

∣∣∣
ω=0

(3.17)

Eq. (3.17) is the central equation for the AAT. It states that the AAT can be computed as the

frequency derivative of the response function 〈〈gIα;mβ〉〉ω evaluated at zero frequency.

3.4 The AAT in the density-matrix based quasi-energy formalism

We now summarize the determination of the AAT at the DFT level of theory within the density-

matrix quasi-energy formalism described in Chapter 2. For reasons of brevity all the involved

matrices are not presented here, and we refer to paper [3] for details. Rather, we focus on the

overall structure of the response function used to determine the AAT and on the use of PDBSs.

Let us first consider the frequency-dependent response function 〈〈gIα;mβ〉〉ω and then move

on to evaluate its frequency-derivative in the static limit [the AAT in Eq. (3.17)].

3.4.1 Frequency-dependent linear response function

The general form of an external perturbation V (t) is given in Eq. (1.18). Recalling that gIα is

given by Eq. (3.10), the relevant perturbing operator V (t) for determining 〈〈gIα;mβ〉〉ω is given

by

V (t) =
∑
I,α

(
RIα−RIα,eq

)
gIα −

∑
α

Bαmα (3.18)

with

RIα −RIα,eq = (RIα,ωe
−iωt +RI∗α,ωe

+iωt) (3.19)

Bα = (Bα,ωe
−iωt +B∗α,ωe

+iωt) (3.20)

where Bα,ω and RIα,ω are perturbation strengths for the magnetic and geometric perturbations,

respectively.
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3.4 The AAT in the density-matrix based quasi-energy formalism

To ensure gauge-invariant results we employ (frequency-dependent) London atomic orbitals [56,

57] {ξµ}, which depend both on the magnetic field and on the nuclear positions

ξµ(r;R,B) = exp
{
i
2(RI(µ)−G)×B · r

}
χµ(r−RI(µ)) (3.21)

where {χµ} are ordinary AOs, I(µ) indicates the nucleus on which ξµ is centered, and G is the

magnetic gauge-origin. The relevant response function 〈〈gIα;mβ〉〉ω is given by Eq. (2.52):

−〈〈gIα;mβ〉〉ω = E0,RB + tr E1,RDB − tr SRBW0 − tr SRWB

= E0,RB + tr E1,RDB − tr SRWB (3.22)

where superscripts R and B indicate differentiation with respect to the perturbation strengths

RI∗α,ω and Bα,ω associated with the nuclear displacements and the magnetic field, respectively.

(The minus sign in Eq. (3.22) enters due to the conventional minus sign in the magnetic contri-

bution in Eq. (3.18)). We note that the inclusion of frequency-dependent PDBSs in Eq. (3.22)

– both the magnetic field dependence and the dependence on the nuclear positions – is an

integrated part of the density matrix formulation in Chapter 2.

3.4.2 The atomic axial tensor in the density-matrix quasi-energy formulation

Within the density matrix based KS-DFT formalism the AAT in Eq. (3.17) is identified by

differentiating Eq. (3.22) with respect to the optical frequency and evaluating in the static limit:

− d

dω
〈〈gIα;mβ〉〉ω

∣∣∣∣
ω=0

= − i
2 tr TRBωD0 + tr SRWBω − i

2 tr TRωDB
ω=0

+ tr
[
hR + Vt,R − i

2TR + Gη,R(D0) + E1,R
xc

]
DBω (3.23)

where we have used the notation that,

DB
ω=0 = DB(ω = 0) (3.24)

DBω =
dDB(ω)

dω

∣∣∣∣
ω=0

(3.25)

The important point is that only six response response equations of the form in Eq. (2.40)

are required to determine all 3N×3 components of the AAT using Eq. (3.23): three equations to

determine the DB
ω=0 components, and also three equations to determine the DBω components.

Specifically, the determination of DB
ω=0 [see Eqs. (2.35)-(2.38)] requires the solution of three

static magnetic field equations for the XB
ω=0 matrix [Eq. (2.40) in the static limit],

DB
ω=0 = D0S0X

B
ω=0 −XB

ω=0S0D0 (3.26)

E[2]XB
ω=0 = RB

ω=0 (3.27)

and the determination of DBω requires the solution of three response equations for XBω,

DBω = D0S0X
Bω −XBωS0D0 (3.28)

E[2]XBω = RBω + S[2]XB (3.29)
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Vibrational circular dichroism

Eq. (3.29) is obtained by differentiating the frequency-dependent first order magnetic response

equation in Eq. (2.40) with respect to ω and evaluating it in the static limit, see paper [3] for

details.

3.5 Summary

We have presented an alternative formula to compute the AAT of VCD based on the frequency

derivative of the linear response function 〈〈gIα;mβ〉〉ω. The formula for the AAT will of course

yield the same results as existing VCD implementations based on alternative formulae [66–71].

and therefore no VCD numbers have been presented in this chapter.

The proposed formula has been implemented within the density matrix-based KS-DFT re-

sponse formulation in Chapter 2, which – in contrast to existing AAT implementations – allows

one to compute the AAT without solving any response equations for the 3N geometric displace-

ments. Only six response equations are solved: three for the magnetic field perturbed densities,

and three for the associated “frequency-perturbed” magnetic field-perturbed densities. The for-

malism naturally accounts for all contributions arising from the use of PDBSs. As only basic

linear algebra operations of AO matrices are involved, the evaluation of the AAT is amenable

to linear scaling provided that the matrices are sufficiently sparse and a linear-scaling response

solver is used.
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Chapter 4

Quasi-energy formulation of damped

response theory

This chapter describes the work presented in paper [4].

4.1 Introduction

Molecular response functions have singularities when one of the optical frequencies equals an

excitation energy [see for example Eq. (1.35)]. This leads to an nonphysical behavior for calcu-

lated molecular properties in the resonance region, such as divergence of dispersion curves and

absorption stick spectra. This nonphysical behavior is caused by the fact that the excited state

lifetimes are assumed to be infinite when the standard molecular response functions are derived.

For a rigorous treatment of molecular properties, which reproduces the correct physical

behavior at resonance frequencies, the finite lifetime of an excited molecular system has to be

taken into account. This is not readily done using a standard quantum chemical description,

and finite lifetimes have therefore been introduced using a phenomenological description by

multiplying the excited states by a damping factor [75].

From a practical point of view, the introduction of finite excited-state lifetimes into the

response functions allows broadened absorption (or dispersion) spectra in any frequency range

to be calculated directly – that is, without explicit reference to transition strengths involving

the individual excited states. The direct calculation of absorption spectra in damped response

theory is particularly advantageous in cases where the standard response-theory approach is very

cumbersome, mainly because many individual excited states need to be addressed. Such cases

include electronic transitions to high-lying excited states in X-ray spectroscopy and absorption

spectra of large molecules in general, where the density of the excited states is particularly

high. To illustrate the latter case we have depicted energy levels for a "small" and a "large"

molecule in Figure 4.1. Standard response theory uses a brute-force "bottom-up" approach for

determining the excited state energies, starting with the energetically lowest lying excited state.

Using this approach excitations involving, for example, the fifty lowest lying excited states can
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Damped response theory

Figure 4.1: Schematic illustration of the excited states for a "small" molecule (left) and for a
"large" molecule (right). The excited states hidden behind the question mark cannot be accessed
using standard response theory, see the text for details.

be identified, and this is usually sufficient to determine absorption spectra in the frequency

range of interest for a small molecule, see Figure 4.1 (left). However, due to the high density of

excited states in a large molecule, only a very limited fraction of the absorption spectrum can

be determined using the standard response theory approach, see Figure 4.1 (right). In contrast,

using damped response theory, the absorption spectrum can be determined in any frequency

range of interest without detailed knowledge about the excited state manifold. Thus, damped

response theory allows one to investigate absorption processes involving excited states "behind

the yellow curtain" in Figure 4.1.

In practice damped response theory may be formulated in different ways. In their complex

propagator approach, Norman et al. [76] introduced a damping term into the Liouville equation

to account for the finite lifetimes of excited states and identified damped response functions from

this equation. Alternatively, damped response theory may be formulated by introducing finite

lifetimes directly into the response functions in terms of complex excitation energies as described

in paper [4]. These two formulations are equivalent, giving the same damped response function

expressions. In both formulations, finite excited-state lifetimes are introduced by means of an

empirical damping parameter. This parameter is input to the response calculation – the theory

provides no recipe for determining the damping parameter. Below we discuss damped response

theory in terms of complex excitation energies.

In Section 4.2 we discuss the introduction of empirical finite excited state lifetimes and

the associated physical interpretations. In Section 4.3 we describe damped response theory with

focus on damped linear response theory, and Section 4.4 contains some illustrate results. Finally,

in Section 4.5 we give some concluding remarks.
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4.2 Phenomenological damping of excited states

4.2 Phenomenological damping of excited states

Assuming that the excited-state wave function |n〉 is a solution to the time-independent Schrödinger

equation

H0|n〉 = En|n〉 (4.1)

the time-dependent excited state |n(t)〉

|n(t)〉 = e−iEnt|n〉 (4.2)

trivially satisfies the time-dependent Schrödinger equation,

i
∂|n(t)〉
∂t

= H0|n(t)〉 = En|n(t)〉 (4.3)

The norm of |n(t)〉 is constant in time,

〈n(t)|n(t)〉 = 〈n|n〉 = 1 (4.4)

and therefore no decay occurs from the excited state to the ground state (or to other excited

states). In other words, the lifetime of the excited state |n(t)〉 is infinite.
In reality, an excited state has a finite lifetime, but the decay mechanism between the ex-

cited state and the ground state is not readily described by the Hamiltonian H0. However, a

phenomenological description of the lifetime may be obtained by introducing a damped excited

state |n̄(t)〉 according to

|n̄(t)〉 = e−γt|n(t)〉 = e−i(En−iγ)t|n〉 (4.5)

The norm of the damped excited state |n̄(t)〉 decays exponentially in time,

〈n̄(t)|n̄(t)〉 = e−2γt (4.6)

and (2γ)−1 may therefore be interpreted as the effective lifetime of the excited state. The

nondamped state |n(t)〉 in Eq. (4.3) possesses a real energy En; by contrast, the damped excited

state |n̄(t)〉 does not possess a well-defined real energy due to its finite lifetime (the energy-time

uncertainty principle),

i
∂|n̄(t)〉
∂t

= (En − iγ)|n̄(t)〉 (4.7)

Comparing Eqs. (4.2) and (4.5) it is seen that damped excited states effectively can be introduced

in terms of complex excited-state energies:

En → En − iγ (4.8)

In the absence of external perturbations, the ground-state lifetime is infinite and the damping

parameter associated with the ground-state energy E0 is therefore zero. Thus, the substitution

in Eq. (4.8) is equivalent to introducing complex excitation energies,

ωn → ω̄n = ωn − iγ, ωn = En − E0 (4.9)
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From a pragmatic point of view, damped response theory is simply a matter of performing

the substitution in Eq. (4.9) in the standard response function expressions to obtain a set of

damped response functions. Here, and in Chapters 5 and 6, a bar indicates that the replacement

in Eq. (4.9) has been carried out.

Let us comment on the physical interpretation of the damping parameter γ, which is an

effective (inverse) lifetime common to all excited states. Due to the energy-time uncertainty

principle this lifetime is related to the widths of peaks in absorption spectra. In standard

response theory [13] transitions between the ground state and excited states are described in

terms of oscillator strengths which are obtained from residues of response functions, see for

example Eq. (1.38). This gives rise to a delta-peaked residue spectrum (absorption spectrum).

In an experimental absorption spectrum the peaks are broadened and the oscillator strength is

obtained by integration over the absorption band representing the electronic transition. The

broadening of the electronic absorption bands is in general associated with contributions arising

from very different physical phenomena:

• The isolated molecule possesses a finite lifetime due to spontaneous emission. This gives

rise to an energy uncertainty manifested in a broadening of the absorption bands.

• The vibrational substructure of electronic absorption spectra leads to a broadening of the

absorption bands.

• In an experiment the molecules are moving relative to the detector which leads to Doppler-

broadening.

• Collisions among molecules perturb the electron densities and therefore the excited state

energies, leading to a broadening of the absorption bands.

Unfortunately, it is essentially impossible to devise an accurate ab initio model, which takes

into account the very many different broadening effects and provides a γ value tailored for each

excited state. In any case, such a task is beyond the scope of this text. In this and the following

chapters we therefore consider γ as a single empirical parameter, effectively encompassing all

the broadening phenomena listed above.

We now discuss the implications of carrying out the replacement in Eq. (4.9) into the standard

response function expressions to obtain the corresponding damped response functions.

4.3 Damped response theory

4.3.1 Damped response parameters

As discussed in Section 1.6, standard response functions may be written in terms of a set of

response parameters x. The response equations in exact response theory all have the same form

of Eq. (1.46). A more detailed derivation [4] shows that Q2,0 contains a (frequency-independent)
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Hessian term E[2] and a frequency-dependent metric term ωS[2]. Specifically, using matrix

notation the m’th order response equation for the xB1...Bm parameters may be written as,

(E[2] − ωB1...BmS[2])xB1...Bm = gB1...Bm (4.10)

where the right-hand side vector gB1...Bm contains response parameters of order m−1 and below.

In general, the Hessian E[2] and metric S[2] matrices have the paired structures:

E[2] =

(
A B

B∗ A∗

)
(4.11)

S[2] =

(
Σ ∆

−∆∗ −Σ∗

)
(4.12)

where an asterisk denotes complex conjugation. In exact theory E[2] and S[2] are diagonal,

E[2] =

(
ωk 0

0 ω∗k

)
(4.13)

S[2] =

(
1 0

0 −1

)
(4.14)

where ωk is a diagonal matrix containing the excitation energies. Using the diagonal represen-

tation the m’th order response parameters may be written out explicitly,(
1xB1...Bm

2xB1...Bm

)
=

(
(ωk − ωB1...Bm)−1 0

0 (ω∗k + ωB1...Bm)−1

)(
1gB1...Bm

2gB1...Bm

)
(4.15)

Although the excitation energies are real in standard response theory, we have retained the

complex conjugation in the lower right blocks in Eqs. (4.13) and (4.15). In this way we impose

the requirement that the paired structure of the Hessian matrix in standard response theory is

retained also in damped response theory. Specifically, by introducing complex excitation energies

according to Eq. (4.9) the damped generalized Hessian Ē[2] becomes:

E[2] → Ē[2] =

(
ω̄k 0

0 ω̄?k

)
=

(
ωk − iγ 0

0 ωk + iγ

)
= E[2] − iγS[2] (4.16)

where we have used Eq. (4.14), and where γ is a diagonal matrix with γ on all diagonal entries.

The damped counterpart of the mth order response equation in Eq. (4.10) determines the mth

order damped response vector x̄B1...Bm ,

[E[2] − (ωB1...Bm + iγ)S[2]]x̄B1...Bm = ḡB1...Bm (4.17)

where we have also carried out the replacement in Eq. (4.9) in the right-hand side vector gB1...Bm

whenever an excitation energy occurs to obtain the damped right-hand side vector ḡB1...Bm . In-

version of Eq. (4.17) yields the damped analogue of the standard response equation in Eq. (4.15):(
1x̄B1...Bm

2x̄B1...Bm

)
=

(
(ωk − ωB1...Bm − iγ)−1 0

0 (ωk + ωB1...Bm + iγ)−1

)(
1ḡB1...Bm

2ḡB1...Bm

)
(4.18)
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A comparison of the standard response equation in Eq. (4.15) and the damped response equation

in Eq. (4.18) illustrates the main differences between standard response theory and damped

response theory:

• Standard response vectors and standard response functions are either purely real or purely

imaginary (depending on the perturbing operators in question), whereas damped response

vectors and damped response functions are complex quantities.

• When the optical frequency approaches an excitation energy, ωB1...Bm→ωk, the standard

response vector xB1...Bm
k diverges. In contrast, the corresponding element of the damped

response vector x̄B1...Bm
k is well-defined at all frequencies, including ωB1...Bm=ωk.

• Comparing Eq. (4.15) and Eq. (4.18) it is seen that damped response theory effectively

corresponds to introducing complex frequencies, e.g.,

ωB1...Bm → ωB1...Bm + iγ. (4.19)

In practice, therefore, damped response theory is a matter of solving response equations

with complex frequencies [4, 76, 77].

In general, the real and imaginary components of a damped response function contains

information about dispersion and absorption processes, respectively (or vice versa, depending

on the nature of the operators). To exemplify this we now consider the damped linear response

function.

4.3.2 Damped linear response theory

By carrying out the replacement in Eq. (4.19) into the linear response function in Eq. (1.35a),

we obtain a sum-over-states expression for the damped linear response function 〈〈A;B〉〉ωB
:

〈〈A;B〉〉ωB
= −

∑
j

(
AojBjo

ωj − (ωB + iγ)
+

AjoBoj

ωj + (ωB + iγ)

)
(4.20)

where we have used the short-hand notation for transition matrix elements in Eq. (1.36). To

illustrate the underlying structure of the damped linear response function, let us consider the

case where A=B=µα is a component of the electric dipole operator and write out in detail the

real and imaginary components of the damped response function,

〈〈µα;µα〉〉ωB
= −

∑
j

(
µojα µ

jo
α dj(ωB) + µojα µ

jo
α dj(−ωB)

+ i
[
µojα µ

jo
α aj(ωB)− µojα µjoα aj(−ωB)

])
(4.21)

where we have introduced the dispersion and absorption lineshape functions dj(±ω) and aj(±ω),

dj(ω) =
ωj − ω

(ωj − ω)2 + γ2
, dj(−ω) =

ωj + ω

(ωj + ω)2 + γ2
(4.22a)

aj(ω) =
γ

(ωj − ω)2 + γ2
, aj(−ω) =

γ

(ωj + ω)2 + γ2
(4.22b)
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Figure 4.2: Dispersion dn(ω) (left) and absorption an(ω) (right) lineshape functions entering in
damped response theory.

The dispersion and absorption lineshape functions are plotted in Figure 4.2. Note that γ de-

termines the width of the lineshape functions; in particular 2γ is full width at half maximum

(FWHM) for the Lorentzian absorption lineshape function.

In the nonresonant region the real component of 〈〈µα;µα〉〉ωB
is – for practical purposes –

identical to the standard response function 〈〈µα;µα〉〉ωB [4]. A plot of (minus) 〈〈µα;µα〉〉ωB
against

ωB thus yields a spectrum of the polarizability. In the resonant region 〈〈µα;µα〉〉ωB diverges [see

Eq. (1.35a)], whereas the real component of 〈〈µα;µα〉〉ωB
is well-defined and has the qualitatively

correct dispersion shape in Figure 4.2 (left). The real part of the damped linear response function

thus provides a physically reasonable description of the polarizability at all frequencies, whereas

the standard response function is well-behaved only in the nonresonant region.

The imaginary part of 〈〈µα;µα〉〉ωB
plotted against ωB describes a one-photon absorption

spectrum, where Lorentzian lineshape functions aj are superimposed onto the electric-dipole

transition strengths |µ0j
α |2. In other words, in damped linear response theory the residue stick

spectrum of the standard linear response function in Eq. (1.38) with superimposed lineshape

functions is effectively projected onto the imaginary axis. We emphasize that, using damped

response theory, absorption spectra may be obtained in any frequency range of interest sim-

ply by calculating 〈〈A;B〉〉ωB
for a set of frequencies ωB in this frequency range and plotting

Im(〈〈A;B〉〉ωB
) against ωB.

4.3.3 Higher-order damped response theory

For the damped linear response function discussed above, the introduction of complex excitation

energies is equivalent to introducing complex frequencies. Likewise, for higher order response

functions, complex frequencies are effectively introduced in accordance with Eq. (4.19) for each

frequency entering the response function. In general, the introduction of damping terms into a

nonlinear damped response function can be interpreted in a similar way as for the polarizability in

Section 4.3.2, where one component describes dispersion and the other absorption. In Chapters 5

and 6 we consider examples of damped quadratic and damped cubic response theory, respectively,

and we therefore refrain from discussing damped nonlinear response theory in this chapter.
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Damped response theory

Figure 4.3: Single adenosine monophosphate nucleotide A1 (left) and single DNA string containing
two adenosine monophosphate nucleotides A2 (right).

4.3.4 Damped response theory for a variational approximate state

For reasons of brevity the reader is referred to paper [4] for a detailed discussion of damped

response theory for a variational approximate state. Here we just state that the damped re-

sponse equations in approximate theory have the same form as in exact theory, see Eq. (4.17).

For example, within the density matrix based KS-DFT formalism of Chapter 2, the damped

counterpart of the mth order response equation in Eq. (2.50) takes the following form:[
E[2] − (ωB1...Bm + iγ)S[2]

]
X̄B1...Bm = R̄B1...Bm . (4.23)

where X̄B1...Bm and R̄B1...Bm are the mth order damped response matrix and damped right-

hand side matrix, respectively. We note that an efficient algorithm for solving damped response

equations was recently developed [78].

4.4 Illustrative results

In this section it is demonstrated that damped response theory is a very useful tool for obtaining

absorption spectra for large molecular systems – in particular, when combined with the AO-based

density matrix formulation in Chapter 2.

We present proof-of-concept calculations of absorption spectra obtained using standard and

damped response theory. The calculations were carried out for a single adenosine monophosphate

nucleotide (referred to as A1 in the following) and for a DNA oligomer containing two adenosine

monophosphate nucleotides (referred to as A2 in the following) for the frequency range up to 0.6

a.u. Molecular structures are given in Figure 4.3. A1 and A2 are representations of the small

and large molecules, respectively, in Figure 4.1. The calculations have been carried out at the

HF/6-31G level of theory using a single-stranded DNA geometry obtained from the Maestro

program [79] without carrying out additional optimizations.

In Figure 4.4 results for A1 (first column) and A2 (second column) are given. In the first

row panels (from the top) the absorption spectra obtained from damped response theory (the
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Figure 4.4: Absorption spectra (xx component) for A1 (first column) and A2 (second column), γ =

0.005 a.u. Top panel: Absorption spectra obtained using the damped response theory approach;
Middle panel: First 50 excitation energies stick spectrum obtained using standard response theory
with superimposed Lorentzian lineshape functions; Bottom panel: Density of the first 50 excited
states.
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imaginary component of the damped linear response function) are shown. In the second row

panels absorption stick spectra containing the first 50 excitations are presented (obtained from

the linear response function residues of standard response theory, see Eq. (1.38)). The Lorentzian

lineshape functions of Eq. (4.22b) have been superimposed onto the residue stick spectrum. The

third row panels show the density of the first 50 excited states, i.e., the number of excited states

with excitation energies in a given frequency interval [ω;ω + ∆ω]. It is seen that the density of

the excited states increases drastically at higher frequencies and for larger systems.

For A1 (an example of the small molecule in Figure 4.1) the first 50 excitation energies

give the absorption spectrum up to a frequency of about 0.6 a.u. The standard residue stick

spectrum with superimposed Lorentzian lineshape functions (second row, left column panel) is

identical to the spectrum obtained using damped response theory (first row, first column panel)

in accordance with the theoretical prediction (Section 4.3.2).

For A2 (an example of the large molecule in Figure 4.1), the first 50 excited states only

include low lying states up to 0.1 a.u. (second row, right column panel). Because the density

of states increases significantly with increasing frequency, it is virtually impossible to calculate

all the excited states in the frequency range between 0.1-0.6 a.u. Therefore, standard response

theory cannot be applied to evaluate the absorption spectrum for this frequency range. Larger

molecules, such as DNA strings containing more than two nucleotides, will have even more low

lying excited states, which will complicate the use of standard response theory even further.

However, damped response theory can be successfully used for obtaining the absorption spectra

for larger systems in all frequency ranges, as can be seen in the first row, second column panel of

Figure 4.4, where the damped absorption spectrum for A2 is given up to a frequency of 0.6 a.u.

Thus, damped response theory allows one to investigate absorption spectra involving excited

states "behind the yellow curtain" in Figure 4.1.

4.5 Concluding remarks and perspectives

Summarizing, damped response theory is a very useful tool for calculation absorption spectra,

in particular for large molecules, where the use of standard response theory is problematic. A

drawback of using damped response theory is that we only get a convoluted absorption spec-

trum and no information about the individual excited states. Alternatively, if the individual

excitation energies and associated absorption strengths are of interest, standard and damped

response theory can potentially be combined: first, the largest peaks in the absorption spectrum

are located using damped response theory, and subsequently the individual excited states corre-

sponding to these particular peaks are accessed in standard response theory using, for example,

root homing techniques [80, 81].
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Chapter 5

Damped response formulation of

Magnetic Circular Dichroism

This chapter describes the work presented in paper [5].

5.1 Introduction

In recent years an increasing number of quantum chemistry publications have dealt with the

subject of Magnetic Circular Dichroism (MCD) [82–98]. MCD is the difference in extinction

coefficients for left and right circularly polarized light traveling through a sample of (non-chiral)

molecules in the direction of a static magnetic field. The phenomenon originates from a dif-

ferential interaction of the sample with left and right circularly polarized light induced by the

external magnetic field. As a consequence, when plane polarized light impinges on the sample,

its two circularly polarized components are absorbed to different extents [23, 99–103]. This is

referred to as the ellipticity of the sample.

The MCD spectrum is usually decomposed and analyzed in terms of three different spec-

tral features corresponding to three molecular parameters known as the Faraday A, B and C
terms [102–108]. For closed-shell molecules only the Faraday A and B terms contribute to the

MCD spectrum, although the A term only contributes if the system possesses degenerate excited

states. The C term only appears for open-shell systems, i.e., systems with a degenerate ground

state. In this chapter we consider MCD for closed shell molecules and refrain from further

discussion of the C term.

Once the Faraday A and B terms have been calculated for the electronic transitions, one can

simulate the MCD spectrum by attaching suitable lineshape functions to each individual term

and adding them together. For near degenerate states this procedure is numerically unstable,

because two very large B terms with associated lineshape functions are subtracted from each

other. These instability problems are encountered in standard response theory and may be

remedied using damped response theory as will be discussed in this chapter.

In Section 5.2 we describe how MCD spectra can be calculated using damped or standard
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Damped Magnetic Circular Dichroism

response theory. In Section 5.3 we demonstrate that a molecule with near-degenerate excited

states may be subject to numerical instabilities arising when calculating MCD spectra using the

standard response theory approach, whereas the damped response theory approach is numerically

stable. Finally, Section 5.4 contains some concluding remarks.

5.2 Methodology

5.2.1 Ellipticity using damped response theory

For plane-polarized light traveling in the Z direction of a space-fixed frame of reference, the

ellipticity θ of a sample of randomly moving molecules in the presence of a static magnetic field

BZ directed along the Z axis is given by (see Ref. [23] or paper [5] for details),

θ =
1

2
ωC Re

(
εαβγ〈〈µγ ;mβ, µα〉〉0,ω+iγ

)
(5.1)

where

C =
1

6
µ0clNBZ (5.2)

Here, mα and µα are the α’th component of the magnetic and electric dipole operators in the

molecular-fixed frame, respectively, ω is the optical (laser) frequency, N is the number density of

molecules in the sample, µ0 is the permeability in vacuum, l is the length of the sample, c is the

speed of light in vacuum, and 〈〈µγ ;mβ, µα〉〉0,ω+iγ is a damped quadratic response function. We

have used the Einstein summation convention in connection with the Levi-Civita tensor εαβγ .

By introducing complex excitation energies according to Eq. (4.9) and using Eq. (1.35b), the

damped quadratic response function 〈〈µγ ;mβ, µα〉〉0,ω+iγ may be expressed as [5],

〈〈µγ ;mβ, µα〉〉0,ωC+iγ =
∑
p 6=o

∑
q 6=o

mop
β µ̃

pq
γ µ

qo
α

ωp(ωq − ωC − iγ)

+
∑
p 6=o

∑
q 6=o

µopγ m̃
pq
β µ

qo
α

(ωp − ωC − iγ)(ωq − ωC − iγ)
+
∑
p 6=o

∑
q 6=o

µopγ µ̃
pq
α m

qo
β

(ωp − ωC − iγ)ωq

+
∑
p 6=o

∑
q 6=o

µoqα m̃
qp
β µ

po
γ

(ωq + ωC + iγ)(ωp + ωC + iγ)
+
∑
p 6=o

∑
q 6=o

moq
β µ̃

qp
α µ

po
γ

ωq(ωp + ωC + iγ)

+
∑
p 6=o

∑
q 6=o

µoqα µ̃
qp
γ m

po
β

(ωq + ωC + iγ)ωp
(5.3)

where we have used the notation for transition matrix elements introduced in Eq. (1.36), the

p, q summations run over all excited states, and we have inserted ωA = −ωC since ωB = 0.

Let us now introduce the Faraday A and B terms for the transition from the ground state

|o〉 to an excited state |j〉 in accordance with Ref. [23]:

A(o→ j) =
1

2

∑
st

εαβγ Im

(
mjtjs
β µjsoα µojtγ

)
=

1

2
εαβγ

∑
s

mj̃sj̃s
β Im

(
µoj̃sγ µj̃soα

)
(5.4a)

B(o→ j) =
∑
s

εαβγ

(∑
p 6=o

Im(mop
β µ

pjs
γ µjsoα )

ωp
+
∑
p6={j}

Im(mpjs
β µjsoα µopγ )

ωp − ω

)
(5.4b)
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In Eq. (5.4b), {j} refers to the set of (possibly) degenerate states with excitation energy ωj ,

and the real states js have been expanded in terms of complex states j̃s which diagonalize the

imaginary mβ operator. In paper [5] it is shown that if the excited state |j〉 is fairly isolated in

the energy spectrum, then the ellipticity in Eq. (5.1) may be expressed in terms of the A(o→ j)

and B(o→ j) terms as:

θ ≈ −Cω
(
B(o→ j)aj(ω) +A(o→ j)

∂aj(ω)

∂ω

)
(ω ≈ ωj) (5.5)

where the absorption lineshape function aj(ω) is given in Eq. (4.22b).

We recognize that the Faraday B terms are associated with an absorption lineshape function,

and that the A terms are associated with a differentiated lineshape function in agreement with

previous findings [102]. The damped response theory expression for the ellipticity in Eq. (5.1)

will therefore an MCD spectrum with contributions from both the Faraday A and B terms,

where the former is multiplied by the frequency derivative of an absorption lineshape function

and the latter is multiplied by an absorption lineshape function. In damped response theory the

A and B contributions can in general not be separated from each other.

5.2.2 Faraday A and B terms using standard response theory

We now discuss how the individual Faraday A and B terms can be calculated as a double and

a single residue, respectively, of a standard quadratic response function. The advantage of this

approach is that one directly calculates the individual A and B terms for each excited state.

To display the underlying structure of the quadratic response function, it is convenient to

write out the sum-over-states expression in Eq. (1.35b) in detail for A=µγ , B=mβ , and C=µα:

〈〈µγ ;mβ, µα〉〉ωB ,ωC =
∑
p 6=o

∑
q 6=o

mop
β µ̃

pq
γ µ

qo
α

(ωp + ωB)(ωq − ωC)

+
∑
p 6=o

∑
q 6=o

µopγ m̃
pq
β µ

qo
α

(ωp − ωB − ωC)(ωq − ωC)
+
∑
p 6=o

∑
q 6=o

µopγ µ̃
pq
α m

qo
β

(ωp − ωB − ωC)(ωq − ωB)

+
∑
p 6=o

∑
q 6=o

µoqα m̃
qp
β µ

po
γ

(ωq + ωC)(ωp + ωB + ωC)
+
∑
p 6=o

∑
q 6=o

moq
β µ̃

qp
α µ

po
γ

(ωq + ωB)(ωp + ωB + ωC)

+
∑
p 6=o

∑
q 6=o

µoqα µ̃
qp
γ m

po
β

(ωq + ωC)(ωp − ωB)
(5.6)

where we have inserted ωA = −ωB − ωC .
In the case where ωB = 0 (static magnetic field) inspection of Eq. (5.6) reveals that double

poles are present; for example in the second term when ωC = ωj and p = q = j. To treat also

such cases correctly we recall that the residue of a general function f(ωC) at ωC = ωj is given

by [109]

R

(
f(ωC);ωj

)
=

1

(n− 1)!
lim

ωC→ωj

dn−1

dωn−1
C

(
(ωC − ωj)nf(ωC)

)
(5.7)
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where n denotes the order of the pole1. Considering Eq. (5.6) at ωB = 0, the first three terms

have first-order (n = 1) poles at ωC = ωj , while the second term also has a contribution from

a second-order pole (n = 2). Using this information and the definition of the A and B terms

in Eq. (5.4), it can be shown [5] that the B term can be identified from a single residue of the

quadratic response function at ωB = 0 and ωC = ωj ,

B(o→ j) = −1

2
Im

{
R

(
εαβγ〈〈µγ ;mβ, µα〉〉0,ωC ;ωj

)}
(5.8)

while the A term can be determined as a double residue,

A(o→ j) =
1

2
εαβγ Im

{[
lim

ωBC→ωj

(ωBC − ωj)
(

lim
ωC→ωj

(ωC − ωj)〈〈µγ ;mβ, µα〉〉ωB ,ωC

)]}
(5.9)

where ωBC = ωB + ωC .

5.3 Numerical instabilities for near-degenerate states

In Section 5.2 it was established that the damped quadratic response function 〈〈µγ ;mβ, µα〉〉0,ω+iγ

directly provides an MCD spectrum with contributions from both the Faraday B and A terms

with associated lineshape functions, see Eqs. (5.1) and (5.5), while the individual B and A terms

can be obtained as single and double residues, respectively, of the standard quadratic response

function 〈〈µγ ;mβ, µα〉〉ωB ,ωC , see Eqs. (5.8) and (5.9). If the excited states are energetically

well-separated the MCD spectrum obtained using damped response theory is identical to the

MCD spectrum obtained by superimposing lineshape functions onto the A and B terms deter-

mined using standard response theory. However, in the case of near-degeneracies the standard

expression for the B term becomes artificially large, and the MCD spectrum obtained using

standard response theory may be numerically unstable. To see this, consider the second term in

the sum-over-states expression for the B term in Eq. (5.4b). At exact resonance we have ω = ωj .

This does not pose a problem, because the (possibly degenerate) state |j〉 is not included in

the summation (p 6=j). However, if the two excited states |j〉 and |f〉 are nearly degenerate –

i.e., |ωj − ωf | < δ (where δ is a very small number) – the term with p = f in the second term

of Eq. (5.4b) will blow up, leading to instabilities. Such instability problems are avoided in

damped response theory, where the lineshape functions are built into the theory, rather than

superimposed onto the residue stick spectrum after the calculation, as is done using standard

response theory.

5.3.1 Cyclopropane: theoretical analysis

To exemplify the above discussion consider the cyclopropane molecule (Figure 5.1, right), which

has a doubly-degenerate state g with two components gf and gj . Changing one of the ĈCC

angles of this molecule lowers the molecular symmetry from D3h to C2v (Figure 5.1, left). This
1In passing we note that the simple residue definition used in Eqs. (1.38) and (1.39) is a special case of the

general definition in Eq. (5.7), which is necessary to treat double (and higher order) poles correctly.
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5.3 Numerical instabilities for near-degenerate states

Figure 5.1: The degenerate E′ state (g) of cyclopropane in a D3h configuration (depicted on the
right) has both an A and a B term contribution to the ellipticity. Increasing one of the ĈCC angles
breaks the D3h symmetry and gives rise to the C2v configuration (depicted on the left), thereby
lifting the degeneracy of the E′ state, which then evolves into two separate states (f and j) of A1

and B2 symmetry. These two states both contribute with a B term to the ellipticity.

causes the degenerate state g to split into two non-degenerate states f and j. The f and j states

both have a B term contribution to the ellipticity, i.e., the contribution to the ellipticity arising

from the states f and j on the left of Figure 5.1 may be written as:

θfj ≈ −Cω
(
aj(ω)B(o→ j) + af (ω)B(o→ f)

)
(5.10)

Consider the change in the ellipticity in Eq. (5.10) as the states |f〉 and |j〉 become degenerate

(i.e., going from left to right in Figure 5.1). In this case damped response theory ensures a smooth

transition of the two B terms in Eq. (5.10) into one A term and one B term for the degenerate

|g〉 state:

θgfgj ≈ −Cω
(
ag(ω)B(o→ g) +

∂ag(ω)

∂ω
A(o→ g)

)
(5.11)

In paper [5] it is shown explicitly that damped response theory ensures a smooth transition

of Eq. (5.10) into Eq. (5.11). In contrast, in standard response theory, the individual B terms as

defined in Eq. (5.4b) are divergent as the ĈCC angle approaches 60◦. Thus, for near-degenerate

states f and j, the B(o→f) and B(o→j) terms of standard response theory approaches infinity.

Superimposing lineshape functions onto the B(o→f) and B(o→j) terms leads to large cancella-

tion effects in the MCD spectrum, because these B terms are both very large but with opposite

signs. This procedure is thus numerically unstable, as the accuracy of the resulting spectrum is

significantly reduced compared to the accuracy of the individual B terms. Only when lineshape

functions are built into the theory, as is the case in damped response theory, the numerical

instabilities are removed.
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5.3.2 Cyclopropane: numerical results

To illustrate the above discussion we now report numerical results obtained for cyclopropane

using both standard and damped response theory. The equilibrium geometry in the D3h con-

figuration has been optimized at the DFT/B3LYP level of theory using the cc-pVTZ basis set.

Distorted geometries have been obtained by changing the ĈCC angle, while keeping all other

geometry parameters fixed. All MCD calculations have been carried out in the gas phase using

the B3LYP functional and the aug-cc-pVDZ basis set. A value of γ = 0.005 a.u. was used in the

damped response calculations. In our implementation we apply the density matrix-based KS-

DFT response formulation discussed in Chapter 2, where we use London atomic orbitals [56, 57]

to ensure gauge-invariant results. The reader is referred to paper [5] for implementation details.

In Figure 5.2 we have plotted damped and standard MCD spectra, where residual norm

thresholds (RNTs) of 10−5 a.u. and 10−9 a.u. in the response equations were used in the

left and right plots, respectively. The upper plots show the spectra at a ĈCC angle of 60◦

(D3h configuration, depicted on the right of Figure 5.1), while the ĈCC angle is increased

as indicated in the figure for the remaining plots (C2v configuration, depicted on the left of

Figure 5.1). Clearly, the damped spectra (red) vary smoothly with the ĈCC angle, regardless

of the RNT, whereas the standard spectra (green) using RNT = 10−5 a.u. change dramatically

for small variations of the ĈCC angle, indicating numerical instabilities. A closer analysis of

the individual B terms used for simulating the standard spectra (see paper [5]) reveals that the

instabilities are caused by two very large B terms with opposite signs – in accordance with the

analysis in Section 5.3.1. By increasing significantly the accuracy in the calculation it is possible

to quench the numerical instability problems such that the two very large B terms cancel each

other in the correct manner. This is illustrated by the standard spectra obtained using the very

tight RNT of 10−9 a.u. in Figure 5.2 (right). These spectra change smoothly as a function

of the ĈCC angle and are very similar to the corresponding damped spectra. We note that

these numerically stable standard response results were obtained with a RNT for the response

equations, which is far below what is conventionally used in MCD calculations.

5.4 Summary

An MCD spectrum can be directly obtained from damped quadratic response theory, where the

MCD spectrum encompasses both A and B terms with different associated lineshape functions.

In general, the information about the individual A and B terms is lost in damped response

theory. In standard quadratic response theory the individual A and B terms may be obtained

from a residue analysis of the appropriate quadratic response function. However, for near-

degenerate states the MCD spectra obtained using standard response theory are numerically

unstable. In contrast, the MCD spectra obtained using damped response theory are numerically

stable and changes smoothly when lifting a degeneracy, for example, by distorting the molecular

geometry. We therefore conclude that the combination of the damped and standard response
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Figure 5.2: Comparison of the MCD spectra obtained directly from damped response theory
(red-solid line) and the simulated standard spectra (green-dashed lines) obtained by superimposing
lineshape functions onto explicitly calculated individual A and B terms. Residual norm thresholds
in the response equations of 10−5 and 10−9 (a.u.) were used in the left and right plots, respectively.
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theory approaches constitutes a potent tool for analyzing MCD spectra providing both: values

for the individual A and B terms (using standard response theory, only well-defined in the

absence of near-degenerate states) and a full MCD spectrum (using damped response theory,

always possible).
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Chapter 6

Damped response theory description of

two-photon absorption

This chapter describes the work presented in paper [6].

6.1 Introduction

In Chapters 4 and 5 examples of damped linear and quadratic damped response theory were

discussed as exemplified by one-photon absorption (OPA) and MCD, respectively. We now turn

our attention to an example of damped cubic response theory, namely two-photon absorption

(TPA) spectroscopy.

Introduced by Goeppert-Mayer in 1931 [110], TPA was first studied experimentally about

fifty years ago [111, 112]. Since then TPA has become a powerful tool in numerous fields of science

and technology, due to its applications, among others, in 3D fluorescence microscopy [113–115],

optical limiting [114, 116], optical data storage [117, 118], and 3D micro-fabrication [113]. Two-

photon (and more generally multi-photon) spectroscopy exhibits greater 3D spatial selectivity,

higher resolution and penetration than usual one-photon absorption spectroscopy, in turn lead-

ing to reduced scattering loss, photo-bleaching and background fluorescence effects. The latest

developments in the field of TPA materials – with emphasis on both the experimental and theo-

retical aspects and on the strategies for the design and characterization of efficient chromophores

– are discussed in detail in recent reviews [119–121].

This chapter is organized as follows. In Section 6.2 we define the relevant TPA quantities,

and in Sections 6.3 and 6.4 we discuss the determination of TPA using standard and damped

response theory, respectively. The standard and damped approaches are compared in Section 6.5,

and Section 6.6 contains some concluding remarks.
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Figure 6.1: Illustration of the TPA |o〉 → |n〉 transition via (A) a so-called virtual state (single-
resonance case), and (B) via an actual intermediate state |m〉 (double-resonance case).

6.2 Two-photon absorption

We consider the process where a molecular system in the ground state |o〉 undergoes a transition

to the excited state |n〉 by absorbing two photons of frequencies ω1 and ω2, i.e., ω1+ω2=ωn, where

ωn is the nth excitation energy. The (A,B)th component (A,B = x, y, z) of the two-photon

transition amplitude tensor T onAB(ω1, ω2) may be written in the sum-over-states expression [110,

122]

T onAB(ω1, ω2) =
∑
p 6=o

(
µopA µ̃

pn
B

ωp − ω1
+

µopB µ̃
pn
A

ωp − ω2

)
(6.1)

where the summation index runs over all excited states (assumed to be real), µA and µB are

components of the electric dipole operator, and where we have used the notation for transition

matrix elements introduced in Eq. (1.36).

For the remainder of this chapter we assume that the two photons have the same energy,

i.e., ω1=ω2=ω. In this case 2ω=ωn, and T onAB(ωn/2, ωn/2) becomes,

T onAB(ωn/2, ωn/2) =
∑
p6=o

(
µopA µ̃

pn
B

ωp − ωn/2
+

µopB µ̃
pn
A

ωp − ωn/2

)
(6.2)

The isotropically averaged expression for the TPA strength δ̄on in a sample of randomly

tumbling molecules – where both photons are linearly polarized with parallel propagation – is

given by [122],

δ̄on =
1

30

∑
A,B

(
2T onAA(ωn/2, ωn/2)T onBB(ωn/2, ωn/2)

+ 4T onAB(ωn/2, ωn/2)T onAB(ωn/2, ωn/2)

)
(6.3)

where the sums run independently over the x, y, z components of the molecular axes.
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6.3 Two-photon absorption in standard response theory

The TPA transition |o〉→|n〉 is usually interpreted as the absorption of one photon to a

so-called “virtual” state, followed by a second one-photon transition from the virtual state to the

final state |n〉 as depicted in Figure 6.1(A). This interpretation is useful when |n〉 is one of the

lower lying excited states. If |n〉 is a higher lying excited state there might exist an intermediate

state |m〉 halfway between the ground state |o〉 and |n〉 as shown in Figure 6.1(B), i.e., ωm=ωn/2.

If the laser frequency ω is chosen such that ω=ωm=ωn/2, the one-photon transitions |o〉→|m〉
and |m〉→|n〉 will be simultaneously resonant. We refer to this situation as a double-resonance.

In this case the mth term in the expression for the TPA amplitude in Eq. (6.2) diverges. This

divergence is caused by the fact that the excited state lifetimes in standard response theory are

assumed to be infinite. An empirical solution to this problem is to introduce a phenomenological

lifetime for the excited states as will be discussed in the context of damped response theory in

Chapter 6.4. Before doing so we consider the determination of TPA in standard response theory

in Section 6.3 below.

For reasons of brevity, we focus only on the sum-over-state expressions in the following

discussions and leave out derivation details, focusing instead on the difference between TPA

spectra obtained using standard and damped response theory and on the associated physical

interpretations. We also omit implementation details; the reader is referred to paper [6] for a

discussion of these.

6.3 Two-photon absorption in standard response theory

6.3.1 Two-photon absorption from quadratic response theory

The TPA amplitude component T onAB(ωn/2, ωn/2) may formally be determined from the residue

in Eq. (1.39) of the quadratic response function 〈〈µA;µB, µC〉〉ωB ,ωC :(
lim

ωC→ωn

(ωC − ωn)〈〈µA;µB, µC〉〉ωB ,ωC

)∣∣∣∣
ωB=−ωn/2

= −T onAB(ωn/2, ωn/2)µnoC (6.4)

The residue in Eq. (6.4) is thus the product of a TPA amplitude and an OPA amplitude

(a dipole matrix element). In standard response theory it is straightforward to separate the

T onAB(ωn/2, ωn/2) and µnoC contributions and subsequently evaluate the TPA strength simply by

squaring the TPA amplitudes as in Eq. (6.3). In damped quadratic response theory a spectrum

of the residues in Eq. (6.4) with superimposed lineshape functions is obtained [4], and it is not

possible to separate out the individual TPA and OPA amplitude components from this spectrum.

However, as we show in Section 6.3.2 below, the TPA strength (the TPA amplitude squared)

equals a residue of a cubic response function, and the corresponding damped cubic response

function thus directly yields a spectrum of TPA strengths as will be detailed in Section 6.4.

6.3.2 Two-photon absorption from cubic response theory

Let us now consider the residue of the cubic response function 〈〈µA;µB, µC , µD〉〉ωB ,ωC ,ωD at

ωCD ≡ ωC + ωD = ωn, which, as we shall see, equals a component of the TPA strength ten-
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Damped two-photon absorption

sor for the two-photon |o〉→|n〉 transition. To this end we turn our attention to the sum-

over-states expression for the cubic response function in Eq. (1.35c). It is clear that only

the terms in the cubic response function containing ωCD in the denominator will contribute

to this particular residue. We therefore define a simplified standard TPA response function

〈〈µA;µB, µC , µD〉〉ωB ,ωC ,ωD(ωCD), where only terms involving ωCD in the total cubic response

function are retained. In paper [6] it is shown that this modified cubic response function may

be written as:

〈〈µA;µB, µC , µD〉〉ωB ,ωC ,ωD(ωCD) = −
∑
q 6=o

{
T oqAB(−ωA,−ωB)T oqCD(ωC , ωD)

ωq − ωCD

+
T oqAB(ωA, ωB)T oqCD(−ωC ,−ωD)

ωq + ωCD

}
(6.5)

By construction the residue of 〈〈µA;µB, µC , µD〉〉ωB ,ωC ,ωD(ωCD) at ωCD = ωn equals the residue

of the full cubic response function, which may thus be identified as:

lim
ωCD→ωn

(ωCD − ωn)〈〈µA;µB, µC , µD〉〉ωB ,ωC ,ωD

= lim
ωCD→ωn

(ωCD − ωn)〈〈µA;µB, µC , µD〉〉ωB ,ωC ,ωD(ωCD)

=T onAB(−ωA,−ωB)T onCD(ωC , ωD) (6.6)

where ωC+ωD=ωn and consequently ωA+ωB=− ωn. We may still consider ωA (or ωB) and ωC
(or ωD) as independent parameters. By choosing ωC=ω and ωA=−ω (where ω is the (positive)

optical laser frequency) we obtain the following frequency relations,

ωA = ωB = −ω; ωC = ωD = ω; ωCD = ωC + ωD = 2ω (6.7)

and Eq. (6.6) becomes

lim
2ω→ωn

(2ω − ωn)〈〈µA;µB, µC , µD〉〉−ω,ω,ω = T onAB(ωn/2, ωn/2)T onCD(ωn/2, ωn/2) (6.8)

Thus, the residue of the cubic response function at ωCD=ωn yields the (A,B,C,D)th component

of the TPA strength tensor T onAB(ωn/2, ωn/2)T onCD(ωn/2, ωn/2) for the |o〉→|n〉 transition.

6.4 Two-photon absorption in damped response theory

Let us now introduce phenomenological finite excited state lifetimes in terms of complex excita-

tion energies [see Eq. (4.9)] into the standard TPA response function in Eq. (6.5). In paper [6] it is

demonstrated that the resulting damped TPA response function 〈〈µA;µB, µC , µD〉〉−ω,ω,ω(ωCD)

may be expressed as:

〈〈µA;µB, µC , µD〉〉−ω,ω,ω(ωCD) = −
∑
q 6=o

(
T oqAB(ω − iγ, ω − iγ)T oqCD(ω + iγ, ω + iγ)

ωq − 2ω − iγ

+
T oqAB(−ω + iγ,−ω + iγ)T oqCD(−ω − iγ,−ω − iγ)

ωq + 2ω + iγ

)
(6.9)
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6.4 Two-photon absorption in damped response theory

where we have allowed for complex frequency arguments in the general TPA amplitude definition

in Eq. (6.1) and used the frequency relations in Eq. (6.7).

In paper [6] Eq. (6.9) is analyzed, and the following expression is derived:

〈〈µA;µB, µC , µD〉〉−ω,ω,ω(ωCD) = −
∑
q 6=o

[
Φq
ABCD(ω) + ΛqABCD(ω)

][
dq(2ω) + iaq(2ω)

]
(6.10)

where the dispersion dq(ω) and absorption aq(ω) lineshape functions are defined in Eq. (4.22),

and where we have introduced the damped TPA strength functions Φq
ABCD(ω) and ΛqABCD(ω)

according to

Φq
ABCD(ω) = P (A,B)P (C,D)

∑
p 6=o,r 6=o

µopA µ̃
pq
B µ

or
C µ̃

rq
Ddp(ω)dr(ω) (6.11a)

ΛqABCD(ω) = P (A,B)P (C,D)
∑

p 6=o,r 6=o
µopA µ̃

pq
B µ

or
C µ̃

rq
Dap(ω)ar(ω) (6.11b)

The permutation operator P (A,B) is defined in Eq. (1.37a).

Before proceeding let us consider the damped linear response function in Eq. (4.21), which

is the one-photon analogue of the damped TPA response function in Eq. (6.10). The terms

where lineshape functions enter with positive frequency arguments are the main contributors to

Eq. (4.21), and we may therefore approximate Eq. (4.21) as

〈〈µA;µB〉〉ω ≈ −
∑
q 6=o

µoqA µ
qo
B

[
dq(ω) + iaq(ω)

]
(6.12)

As discussed in Section 4.3.2, the imaginary part of the damped linear response function rep-

resents a spectrum of the (A,B)th component of the OPA tensor [µoqA µ
qo
B ] with superimposed

Lorentzian lineshape functions aq(ω), whereas the real part describes a dispersion spectrum.

Noticing the similarities between Eqs. (6.10) and (6.12) we therefore define a damped TPA

function δABCDD (ω), which equals minus the imaginary part of Eq. (6.10),

δABCDD (ω) ≡ − Im
[
〈〈µA;µB, µC , µD〉〉−ω,ω,ω(ωCD)

]
=
∑
q 6=o

Φq
ABCD(ω)aq(2ω) +

∑
q 6=o

ΛqABCD(ω)aq(2ω) (6.13)

The isotropically averaged damped TPA spectrum δ̄D(ω) is now obtained as in Eq. (6.3)

δ̄D(ω) =
1

30

∑
A,B

(
2δAABBD (ω) + 4δABABD (ω)

)
(6.14)

We note that the imaginary part of the damped linear response function in Eq. (6.12) is

identical to a one-photon stick spectrum with superimposed lineshape functions. In general,

the damped TPA function δ̄D(ω) is not completely identical to the standard TPA strengths in

Eq. (6.2) with superimposed lineshape functions. However, in Section 6.5.1 it is shown that in the

single-resonance case [Figure 6.1(A)] the damped and standard TPA spectra are – for all practical

purposes – identical. In contrast, in the double-resonance case depicted in Figure 6.1(B), the

standard TPA spectrum diverges, whereas the damped TPA spectrum is still well-defined and

physically meaningful, as discussed in Section 6.5.2.
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Damped two-photon absorption

Figure 6.2: Standard (red) and damped (black) TPA spectra for LiH at the CAM-B3LYP/aug-cc-
pVTZ level of theory using the experimental equilibrium geometry 1.5957 Å [123]. The broadening
parameter γ = 0.004 a.u. Note that the optical frequency ω corresponds to a one-photon frequency.

6.5 Comparison of standard and damped TPA

6.5.1 The single-resonance case

In paper [6] it was shown that in the single-resonance case depicted in Figure 6.1(A) (i.e., the

laser frequency ω is far-off-resonance), the damped TPA function in Eq. (6.13) is approximately

given by:

δABCDD (ω) ≈
∑
q 6=o

T oqAB(ω, ω)T oqCD(ω, ω)aq(2ω) (ω far-off-resonance) (6.15)

This expression is very similar but not identical to the corresponding standard TPA residue

spectrum with superimposed lineshape functions δABCDS (ω), which, using Eq. (6.8), has the

form

δABCDS (ω) =
∑
q 6=o

T oqAB(ωq/2, ωq/2)T oqCD(ωq/2, ωq/2)aq(2ω) (6.16)

The TPA amplitudes in the damped TPA spectrum in Eq. (6.15) depend on the optical frequency

ω, whereas the frequencies entering the standard TPA amplitudes in Eq. (6.16) equal exactly

half the excitation energies ωq/2. In the single-resonance case the damped and standard TPA

spectra will thus be very similar, but not identical.

To illustrate the discussion above we have in Figure 6.2 plotted the isotropically averaged

damped TPA spectrum in Eq. (6.14) and the corresponding averaged standard TPA spectrum

δ̄S(ω),

δ̄S(ω) =
1

30

∑
A,B

(
2δAABBS (ω) + 4δABABS (ω)

)
(6.17)
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6.5 Comparison of standard and damped TPA

for a CAM-B3LYP calculation on the LiH molecule using the aug-cc-pVTZ basis. The first

excited state in LiH (ω1=0.128 a.u.) is energetically isolated, and therefore the |o〉→|1〉 two-
photon transition is appropriate to illustrate the single-resonance case. Thus, the frequency

range in Figure 6.2 is centered around ω1/2 to probe the two-photon excitation to |1〉. Clearly,
for all practical purposes the standard and damped spectra are identical, but a closer inspection

reveals that they differ slightly for the reasons discussed above.

6.5.2 The double-resonance case

Consider the double-resonance case, where ω and 2ω are both close to resonance in the sense

that ω≈ωm and 2ω≈ωn, see Figure 6.1(B). In this case the standard expression for the TPA

amplitude in Eq. (6.2) becomes artificially large, and it diverges in the limit where ω=ωm=ωn/2.

In damped response theory the singularity problems of standard response theory are effectively

avoided by introducing a factor iγ in the denominator of the standard TPA amplitudes, see

Eq. (6.9). We now discuss the implications of this empirical solution to the singularity problem

in the double-resonance case.

In the double-resonance case, the damped TPA function in Eq. (6.13) may be approximated

by [6]:

δABCDD (ω) ≈ P (A,B)P (C,D)
(
µomA µmnB µomC µmnD

)
am(ω)2an(2ω) (ω ≈ ωm ≈ ωn/2) (6.18)

To investigate in more detail the physical content of Eq. (6.18) let us consider the exact

double-resonance case ω=ωm=ωn/2, see Figure 6.1(B), and assume that A=B=C=D=x (TPA

absorption along the x axis):

δxxxxD (ω) ≈ 4|µomx |2|µmnx |2(8τ3) (ω = ωm = ωn/2) (6.19)

where we have used Eq. (4.22b) and inserted the empirical lifetime τ=(2γ)−1. A simple physical

interpretation of the TPA process described by Eq. (6.19) is the following two-step process:

(i) First, the one-photon excitation |o〉→|m〉 occurs with transition strength |µomx |2, corre-

sponding to the first transition in Figure 6.1(B). This process is proportional to the lifetime

of |m〉 (τ);

(ii) Following the |o〉→|m〉 transition, a second one-photon transition |m〉→|n〉 occurs with

transition strength |µmnx |2 [the second transition in Figure 6.1(B)]. This process is propor-

tional to the lifetime of |m〉 (τ) and to the lifetime of |n〉 (also τ because we simply assume

that all excited states have the same lifetime).

The total TPA process is therefore proportional to |µomx |2τ (first transition) times |µmnx |2τ2

(second transition). We emphasize, however, that no real information is contained in the lifetime

τ , because it is an empirical parameter, and consequently the interpretation given above is only

qualitative.
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Damped two-photon absorption

Figure 6.3: Damped absorption spectra for the artificial hydrogen fluoride test system described
in the text, where the third excitation energy ω3 equals half the fourth excitation energy ω4/2

(indicated by black stick). The broadening parameter γ = 0.004 a.u. Note that the optical frequency
ω corresponds to a one-photon frequency.

Consider now the exact double-resonance case for a small test calculation on hydrogen flu-

oride with an H-F bond length of 1.95477 a.u., and with 6-31G basis functions on F and an

STO-3G basis function on H. This very artificial system is of course not realistic representation

of the hydrogen fluoride molecule; however, it serves as a useful test system, because the third

and fourth excitation energies are related by ω3=ω4/2=0.7204 a.u. at the Hartree-Fock level of

theory. This system thus illustrates the structure of damped TPA spectra in the general double-

resonance case. A standard TPA calculation of the |o〉→|4〉 two-photon transition for this HF

molecule will give meaninglessly large numbers, if the response equations converge at all. In con-

trast, the damped TPA calculation gives a smooth spectrum centered at ω=ω3=ω4/2=0.7204

a.u. as shown in Figure 6.3. The damped TPA formulation thus provides a well-defined spec-

trum, also in double-resonance cases.

6.5.3 The two-photon absorption spectrum of BINOL

Having considered isolated single- and double-resonance peaks in TPA spectra for small test

systems in Section 6.5.1 and 6.5.2, respectively, we now turn our attention to the TPA spectrum

for a molecule of a relatively large size, namely R-(+)-1,1’-bi(2-naphtol) (BINOL). The TPA and

two-photon circular dichroism spectra of BINOL were reported recently [124, 125] for the species

dissolved in tetrahydrofuran (THF). The one- and two-photon spectra of both gas-phase and

solvated BINOL have also been studied computationally, see Refs. [124–126].

In Figure 6.4 we have plotted the standard and damped TPA spectra calculated at the

DFT/B3LYP level using the cc-pVDZ basis set and the geometrical parameters from Ref. [127].

Also plotted are the experimental TPA data (measured in THF solution) taken from Ref. [126].
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Figure 6.4: BINOL, cc-pVDZ basis set. Damped (γ=0.004 a.u., blue curve with blue stars) vs.
standard (vertical green sticks) TPA results. The convoluted standard spectrum, obtained with
the same γ is given by the purple curve. Also reported are the experimental data from Ref. [126]
(black line with red diamonds). To make comparison easier, the computed damped TPA, standard
convoluted and experimental spectra were all normalized in intensity.

The experimentally determined TPA spectrum δTPA(ω) is related to the calculated standard

TPA spectrum by [128]

δTPA(ω) ≈ 5.31678× 10−4ω2δ̄X(ω) (6.20)

where X=S for standard TPA [see Eq. (6.17)], and X=D for damped TPA [see Eq. (6.14)].

Eq. (6.20) yields the TPA spectrum in Göppert-Mayer (GM) units, when all the quantities on

the right hand side are given in atomic units. For standard TPA, the sum in Eq. (6.16) was in

the considered case restricted to the 35 first excited states:

δABCDS (ω) =
35∑
q=1

T oqAB(ωq/2, ωq/2)T oqCD(ωq/2, ωq/2)aq(2ω) (6.21)

Considering Figure 6.4, the standard and damped spectra are reasonably close to each other

although not identical for the reasons discussed in Section 6.5.1 and 6.5.2. However, below 400

nm the standard spectrum dies out abruptly, because only 35 excited states have been considered,

see Eq. (6.21). In contrast, the damped TPA spectrum by construction gets contributions from

all excited states and thus also from strong TPA absorbers well below 400 nm, which have not

been determined using the standard approach.

Our simulated spectra show qualitatively the behavior observed in experiment, although

with a net blue shift of the peak observed by experimentalists around 450 nm (by at least 70–75

nm if we assume that it can be mimicked by the relative maximum at ≈375 nm in the simulated

spectra). A more in depth comparison with experiment is given in Ref. [126].
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6.6 Conclusion and perspectives

We have demonstrated how TPA spectra can be calculated in damped response theory by in-

troducing complex excitation energies into the standard response theory expressions. By con-

struction, standard and damped TPA spectra are not completely identical. However, in the

single-resonance case standard and damped response theory provide – for practical purposes –

the same TPA spectra. In contrast, the occurrence of double-resonances causes the standard

TPA spectrum to blow up, whereas the damped TPA spectrum is well-defined and provides

physically motivated TPA spectra at all optical frequencies.

Damped response theory provides a complete and reasonable description of TPA spectra

without detailed knowledge of the excited electronic state manifold and of their two-photon

responses. This is of extreme importance in large molecules, where the density of excited states

in regions of relevance for two-photon spectroscopy might be particularly large (see the discussion

in connection with Figure 4.1). We thus consider damped response theory as a viable tool to

investigate TPA properties of large molecular systems.

60



PART B: Linear-scaling formulation of

coupled-cluster theory – the

Divide-Expand-Consolidate approach
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Chapter 7

The DEC method I: Foundation and

proof of concept

This chapter describes the work presented in paper [7].

7.1 Introduction

In Chapters 2-6 molecular properties were treated within the DFT (or HF) framework. In many

cases DFT provides a qualitatively correct description of the energetics and molecular properties

of a molecular system at a relatively low computational cost. In particular, using linear-scaling

techniques [39–47], it is possible to perform calculations on large molecular systems at the

DFT level. However, the empirical nature of the correction terms and the neglect of dispersion

forces1 in standard DFT functionals make it difficult to systematically improve the accuracy of

DFT. In this and the following chapters we consider the more accurate coupled-cluster (CC)

method [63, 130], which is usually a better and safer choice.

Assuming that the electronic structure is dominated by a single HF reference determinant,

the well-known hierarchy of CC models constitutes a systematic way of obtaining increasingly

accurate energetics and molecular properties [63]. Furthermore, in contrast to standard DFT

functionals, the CC models provide a correct description of dispersion forces which is crucial

for a proper description of, e.g., the intramolecular interactions in large biomolecules including

proteins and DNA. Unfortunately, the application of CC methods in their standard formulations

has been limited to small molecules, because the computational time scales dramatically with

molecular size. For example, the computational times of the increasingly accurate models in the

CC energy hierarchy MP2 [131] (second order Møller-Plesset perturbation theory), CCSD [132]

(CC with singles and doubles excitations), CCSD(T) [133] (CCSD with approximate triples),

and CCSDT [134, 135] (CC with singles, doubles, and triples) scale as N5, N6, N7, and N8,

respectively, where N is a measure of the molecular system size. The red curve in Figure 7.1

1It should be noted that empirical dispersion-corrections to the "standard DFT energy" have been suggested,

see Ref. [129] for a recent review.
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Figure 7.1: Estimated computational time as a function of system size for the CCSD(T) method
using the standard approach (red curve), a linear-scaling approach (green curve), and a linear-scaling
and embarrassingly parallel approach (blue curve).

gives the estimated computational time plotted against system size for standard CCSD(T) cal-

culations. It is clear that, using a standard implementation, accurate CC calculations on large

molecules (such as the insulin molecule displayed in Figure 7.1) will forever be out of reach.

This so-called scaling wall of conventional CC algorithms arises because standard CC calcu-

lations are expressed in the nonlocal canonical HF basis (Figure 7.2, top), whereas the major

task of the CC calculation is to improve the mean-field HF treatment by describing the local

electron-electron interactions (dynamical correlation). However, using a set of local orbitals

(Figure 7.2, bottom) it should be possible to capture the local nature of the electron correlation

effects in an efficient manner, such that the computational time of a CC calculation ideally

scales only linearly with the system size (green curve in Figure 7.1). This would allow highly

accurate calculations to be carried out on systems with a thousand atoms within a few months.

Better still, if the CC calculation is also embarrassingly parallel – in the sense that the full CC

calculation may be carried out in terms of small independent fragment calculations – it would

be possible to carry out highly accurate CC calculations in a few days (blue curve in Figure 7.1).

Naturally, this idealized case assumes that a sufficient number of processors are available for the
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7.2 Standard coupled-cluster theory

Figure 7.2: Least local occupied and virtual canonical orbitals and least local occupied and virtual
localized orbitals for an alpha-helix peptide containing 8 alanine residues. The local orbitals were
obtained using the localization procedure described in Chapter 10.

fragment calculations, and that the fragments are only of modest size.

The goal of this chapter is to present the foundation for the linear-scaling and embarrassingly

parallel Divide-Expand-Consolidate (DEC) CC method, which is an attempt to approach the

idealized blue curve in Figure 7.1. In Chapter 8 we discuss additional features of the DEC

method and compare it method to existing local CC methods. The main motivation for the

DEC scheme is not to be able to compete with conventional CC implementations for small and

medium-sized molecules. Rather, the aim is to develop a method which enables CC calculations

on large molecular systems – where conventional CC calculations encounter a scaling wall – and

which reproduces the standard CC results. At this stage the DEC method has been developed

for the MP2 and CCSD models. For completeness, the discussion in this chapter is initiated by

summarizing standard CC theory.

7.2 Standard coupled-cluster theory

The CC wave function may be written in the form [63]

|CC〉 = exp (T ) |HF〉 (7.1)

where |HF〉 is the HF reference state and the cluster operator T is written as

T = T1 + T2 + · · · (7.2)
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The T1 operator produces single excitations from the HF reference state, T2 produces double

excitations, and so on:

T1 =
∑
ai

taiEai (7.3)

T2 =
1

2

∑
aibj

tabijEaiEbj (7.4)

where tai and tabij denote singles and doubles amplitudes, respectively. Eai is a singlet excitation

operator describing an excitation from the occupied orbital φi to the virtual orbital φa, and it

can be written in terms of the elementary creation operators a†aσ and annihilation operators aiσ
(with σ denoting spin) according to [63]

Eai = a†aαaiα + a†aβaiβ (7.5)

In this and the following chapters only closed-shell molecules are considered and indices i, j, . . .

refer to occupied HF molecular orbitals, indices a, b, . . . refer to virtual HF molecular orbitals,

while indices p, q, . . . are reserved to molecular orbitals of general type. Finally, Greek indices

µ, ν, τ, ε, . . . refer to atomic orbitals.

The CC energyECC is not determined variationally. Rather, the time-independent Schrödinger

equation written in the form

H0 exp (T ) |HF〉 = ECC exp (T ) |HF〉 (7.6)

is multiplied from the left by exp (−T ) and projected by the HF reference state 〈HF| to yield

ECC,

ECC = 〈HF |exp (−T )H0 exp (T )|HF〉 (7.7)

Multiplication of Eq. (7.6) by exp (−T ) followed by projection against the excited state deter-

minants 〈µ| gives the nonlinear CC amplitude equations,

〈µ |exp (−T )H0 exp (T )|HF〉 = 0 (7.8)

whose solution yield the CC amplitudes and thus the CC wave function.

If all T1, . . . , Tn excitation operators (n being the number of electrons in the system) are

included in Eq. (7.2), the CC model is equivalent to the so-called full configuration interaction

(FCI) model, i.e., ECC = EFCI. In practice the expansion in Eq. (7.2) is truncated. For example,

if Eq. (7.2) is truncated after the T2 operator, the CCSD model [132] is obtained. Note that,

due to the exponential parameterization in Eq. (7.1), higher than second order excitations are

also included in the CCSD model – for example, quadruple excitations are introduced in terms

of disconnected cluster operator terms, such as 1
2T

2
2 . Importantly, the exponential ansatz also

ensures that the approximate CC models are size-extensive. Therefore, small and large systems

are described with the same accuracy in the sense that the relative error in the CC energy

compared to the FCI energy is the same for a single monomer and for an arbitrary number of

noninteracting monomers.
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It is convenient to express the total CC energy ECC as a sum of a HF contribution EHF and

an electron correlation contribution Ecorr,

ECC = EHF + Ecorr (7.9)

By evaluating Eq. (7.7), an expression for the correlation energy may be obtained as [63]

Ecorr =
∑
ijab

(tabij + tai t
b
j)Liajb (7.10)

where

Liajb = 2giajb − gibja (7.11)

and giajb is a two-electron integral in the HF orbital basis given by (assuming real orbitals),

giajb =

∫∫
φi(r1)φa(r1)

1

r12
φj(r2)φb(r2)dr1dr2 (7.12)

The expression for the correlation energy in Eq. (7.10) applies to all standard CC models.

By carrying out a perturbation theory analysis of the CCSD model and retaining only the first

order terms, the CCSD model reduces to the much simpler MP2 model [63], where only doubles

excitations are present. Thus, an expression for the MP2 correlation energy can be identified by

omitting the singles contributions from Eq. (7.10).

The CC amplitude equations in Eq. (7.8) may be evaluated for the different excitation levels

〈µ|. For example, the MP2 amplitude equation becomes [63],

gaibj +
∑
c

tcbijFac +
∑
c

tacij Fbc −
∑
k

tabkjFki −
∑
k

tabikFkj = 0 (7.13)

where Frs is an element of the Fock matrix. The MP2 equation is a subset of the CCSD

doubles amplitude equation. For explicit expressions for the singles and doubles CCSD amplitude

equations, see Ref. [63] or Table 2 in paper [7].

7.3 The Divide-Expand-Consolidate scheme

In this section the DEC strategy for obtaining the MP2 and CCSD correlation energies is de-

scribed. It is assumed that a set of orthogonal, local HF orbitals is available for both the occupied

and virtual orbital spaces. In Chapter 10 we describe how such local orbitals may be obtained

in practice. By exploiting the locality of the orbitals and rewriting the CC equations it will be

demonstrated that it is possible to evaluate Ecorr in a linear-scaling and embarrassingly parallel

manner. The HF contribution to the energy may also be evaluated in a linear-scaling manner

as discussed elsewhere [39–45].

After the initial HF calculation, the first step in the DEC scheme is to assign each local HF

orbital to the atomic site where it has the largest Mulliken charge. In this way each atomic site

is assigned a set of local occupied and a set of local virtual HF orbitals. The set of occupied HF

orbitals assigned to atomic site P is denoted P and the set of virtual HF orbitals assigned to
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Table 7.1: Overview of the notation used in the DEC method.

Symbol Short description

P ,Q,R, . . . Labels for atomic sites

Eo
P Atomic fragment energy

∆Eo
PQ Pair interaction energy

EP Energy orbital space (EOS) for evaluating Eo
P

AP Amplitude orbital space (AOS) for calculating CC amplitudes

{AP} Atomic fragment extent where MO coefficients are expanded

P Set of occupied orbitals assigned to site P (occupied orbitals in EP)

P Set of virtual orbitals assigned to site P

[P ] Set of occupied orbitals local to P

[P ] Set of virtual orbitals local to P (virtual orbitals in EP)

BP Occupied buffer orbital space

BP Virtual buffer orbital space

FOT Fragment optimization threshold defining the accuracy of Eo
P

atomic site P is denoted P . Table 7.1 contains an overview of the DEC notation. An illustration

of how a one-dimensional model system is divided into atomic sites and assigned a set of occupied

and virtual HF orbitals is given in Figure 7.3(A). As a specific example we present the orbital

assignment for the C14H2 molecule (cc-pVDZ basis) in Figure 7.3(B). The orbitals are not evenly

distributed because the local orbitals do not reflect the symmetry of the molecule. However,

this uneven distribution is unproblematic because the DEC algorithm automatically adjusts the

sizes of the orbital spaces according to the specific assignment of orbitals as will be detailed in

Section 7.4.2.

Having assigned the local HF orbitals to atomic sites, the correlation energy in Eq. (7.10)

can be expressed in terms of atomic fragment energies Eo
P and pair interaction energies ∆Eo

PQ

Eo
P =

∑
ij∈P
ab

(tabij + tai t
b
j)Liajb (7.14)

∆Eo
PQ =

∑
i∈P
j∈Q

∑
ab

(tabij + tai t
b
j)Liajb +

∑
i∈Q
j∈P

∑
ab

(tabij + tai t
b
j)Liajb (7.15)

giving

Ecorr =
∑

P

Eo
P +

∑
P>Q

∆Eo
PQ (7.16)

where the summations run over all atomic sites. No approximations have been made in Eq. (7.16);

the summations in Eq. (7.16) have simply been reordered compared to Eq. (7.10).

In a conventional CC calculation, the CC wave function is expanded in the nonlocal canonical

HF orbital basis, and therefore the integrals giajb entering Eqs. (7.14) and (7.15) are generally

nonvanishing for any choice of indices i, a, j, b, see Figure 7.4 (left). The evaluation of Ecorr thus
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Figure 7.3: (A) Molecular system divided into atomic sites I,J, . . . ,P, . . . where each site has been
assigned a set of occupied (blue) and a set of virtual (red) HF orbitals. (B) Example of orbital
assignments for the C14H2 molecule, where the numbers of occupied and virtual orbitals assigned
to each atom are given above the atoms.

scales with the fourth power of the system size. However, the computational effort required to

evaluate Eqs. (7.14) and (7.15) may be greatly reduced by using a local HF basis. Specifically, an

integral giajb is nonvanishing only if the φiφa and φjφb charge distributions are both nonzero –

i.e., φi and φa are close to each other in space and likewise for φj and φb, see Figure 7.4 (right).

To be more specific with respect to the summation restrictions for local orbitals depicted in

Figure 7.4 (right), let us consider the giajb integral for the case where i ∈ P and j ∈ Q. This

integral is nonvanishing only if a ∈ [P ] and b ∈ [Q], where [P ] refers to the set of virtual HF

orbitals local to P (including P ):

giajb 6= 0 : i ∈ P , a ∈ [P ] , j ∈ Q , b ∈ [Q] (7.17)

By applying the locality restriction in Eq. (7.17), Eqs. (7.14) and (7.15) may be written as

Eo
P =

∑
ij∈P
ab∈[P ]

(tabij + tai t
b
j)Liajb (7.18)

∆Eo
PQ =

(∑
i∈P
j∈Q

+
∑
i∈Q
j∈P

) ∑
ab∈[P ]∪[Q]

(tabij + tai t
b
j)Liajb (7.19)

We refer to the set of orbitals in P and [P ] as the energy orbital space (EOS) EP for the atomic

site P ,

EP = P ∪ [P ] (7.20)

since P and [P ] contain the set of occupied and virtual orbitals, respectively, required to deter-

mine Eo
P. The sizes of the EOSs for the different fragments are not known a priori. Rather,
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Figure 7.4: For nonlocal orbitals (left) giajb integrals are in general nonvanishing for any choice
of indices i, a, j, b. Using local orbitals (right) the giajb integrals are nonvanishing only if the local
φiφa and φjφb charge distributions are simultaneously nonvanishing.

Figure 7.5: Illustrations of excitations from occupied orbitals φi and φj (blue) into virtual orbitals
φa and φb (red). Left: Short-range electron-electron repulsion described by the atomic fragment
energy Eo

P (Coulomb hole). Right: Dispersion effects described by pair interaction energy ∆Eo
PQ.

the sizes of the orbital fragments are determined during the calculation in a black box man-

ner to ensure that the standard CC energy is determined to a preset threshold as discussed in

Section 7.4.2.

A qualitative physical interpretation of the fragment energies in Eqs. (7.18) and (7.19) is

the following. The atomic fragment energy Eo
P describes short-range electron-electron repulsion

in terms of excitations from two overlapping occupied orbitals φi and φj into two neighbouring

virtual orbitals φa and φb, see Figure 7.5 (left). This ultimately describes the so-called Coulomb

hole in the wave function. For larger pair distances the pair interaction energy ∆Eo
PQ describes

dispersion effects (also known as induced dipole-induced dipole interactions), which decays with

the inverse pair distance to the sixth power r−6
PQ. As indicated by the induced partial charges in

Figure 7.5 (right) dispersion effects are in general attractive.

Having introduced the DEC partitioning of the energy as defined by Eqs. (7.16), (7.18),

and (7.19), we are now in position to summarize the Divide-Expand-Consolidate scheme for the

determination of the correlation energy:
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• Divide the orbital space among the atomic sites (Figure 7.3).

• Expand the orbital spaces of the individual atomic fragments to obtain converged atomic

fragment energies Eo
P. Pair fragments are then formed as unions of atomic fragments to

calculate the pair interaction energies ∆Eo
PQ.

• Consolidate the calculated atomic fragment energies and pair interaction energies ac-

cording to Eq. (7.16) to get the correlation energy for the full molecular system.

This scheme is summarized in Figure 7.6.

Figure 7.6: Overview of the Divide-Expand-Consolidate (DEC) scheme for evaluating the corre-
lation energy.

Consider the computational scaling of the DEC method. The number of atomic fragments

equals the number of atoms N in the molecule, while there are N(N−1)/2 pair fragments, lead-

ing to a quadratic scaling with system size. However, since ∆Eo
PQ describes dispersion effects

decaying with the inverse pair distance to the sixth power, distant pairs may be omitted from the

DEC calculation with a negligible effect on the correlation energy. For a large (homogeneous)

molecular system each atomic site thus interacts with a fixed number of other atomic sites Nint,
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and the total number of pair fragments to consider is NintN/2 (neglecting boundary effects).

Assuming that the orbital fragment sizes are independent of the molecular system size (which

follows from the theoretical locality analysis in Section 7.4.1 and is supported by the numerical

results in Section 7.5.2), it follows that the DEC scheme becomes linear-scaling for large molec-

ular systems. Furthermore, both the atomic fragment calculations as well as the subsequent

pair fragment calculations are independent. Therefore, the DEC scheme is also embarrassingly

parallel in the sense that the fragment calculations may be carried out on different nodes of

a supercomputer with no communication between the nodes. Thus, in the ideal case where

a sufficient number of processors are available, the total time for a DEC CC calculation (not

considering the initial HF calculation) is simply the sum of the times required for the largest

atomic fragment calculation and the largest pair fragment calculation – independently of the

molecular system size.

7.4 Fragment orbital spaces in the DEC method

7.4.1 Locality analysis of the amplitude equations

Eq. (7.18) states that the fragment energy Eo
P may be evaluated in a small local EOS containing

the occupied orbitals assigned to atom P and virtual orbitals in the [P ] space. In order to

evaluate Eq. (7.18) the corresponding CC amplitudes must of course be known. In this section

it is described how the locality of the orbitals can be exploited to determine the amplitudes

inside the EOS without invoking a full molecular calculation. Details are given in paper [7],

where a locality analysis of the MP2 and CCSD amplitude equations is carried out. The main

results are summarized here.

Consider an EOS amplitude tabij,P used for evaluating the atomic fragment energy Eo
P. When

the amplitude equations involving tabij,P are solved, tabij,P couples strongly to other amplitudes

inside the EOS. However, tabij,P couples only weakly to amplitudes outside the EOS. In particular,

the coupling effects between tabij,P and an amplitude tcdkl outside the EOS decrease rapidly with

increasing distance between atomic site P and the MOs φk, φl, φc, and φd. Therefore, the EOS

amplitudes for atomic fragment P can be determined accurately by solving the CC amplitude

equations in a small local orbital fragment space, including only orbitals which are spatially

close to the atomic site P . However, due to coupling effects it is necessary to include some

surrounding buffer atoms outside the EOS to ensure that the amplitudes inside the EOS are

determined with sufficient accuracy. By denoting the occupied and virtual buffer spaces as

BP and BP, respectively, the amplitude orbital space (AOS) AP used to solve the amplitude

equations for atomic fragment P is the union of the EOS in Eq. (7.20) and these buffer spaces:

AP = EP ∪ BP ∪ BP (7.21)

To carry out the DEC fragment calculations in an efficient manner it is also necessary to

restrict the MOs inside AP to a localized region of space. In general, a MO φXr assigned to an
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7.4 Fragment orbital spaces in the DEC method

Figure 7.7: Atomic fragment P . The atomic fragment energy Eo
P is evaluated in the energy orbital

space (EOS) EP (dark-blue and dark-red markings). The CC amplitude equation is solved in the
amplitude orbital space AP, where occupied BP (light-blue) and virtual BP (pink) buffer spaces
are added to the EOS. The expansion coefficients for the molecular orbitals in the AP space are
confined to the atoms in the atomic fragment extent {AP}.

atom X inside the AOS is expanded in terms of atomic orbitals χ,

φXr =
∑
µ

χµCµr; (X ∈ AP) (7.22)

Even though the MOs are localized in space (see, for example, Figure 7.2), there may be very

small – but nonzero – orbital coefficients Cµr on distant atoms far away from X. Therefore,

the µ summation in Eq. (7.22), in principle, runs over all atoms in the molecule. However, it

is possible to remove the very small orbital tails on distant atoms without compromising the

accuracy of the correlated calculation. This can be done by approximating φXr by an orbital

φ̃Xr , where the µ summation index in Eq. (7.22) runs only over a limited part of the molecule,

denoted the atomic fragment extent {AP}:

φ̃Xr =
∑

µ̃∈{AP}

χµ̃C̃µ̃r; (X ∈ AP) (7.23)

The atomic fragment extent contains the atoms in AP and some additional boundary atoms to

ensure a proper description of the MOs inside AP. Thus, for atomic fragment P , two-electron

integrals in the atomic orbital basis need to be calculated for atoms in the {AP} space. The

details for determining {AP} and the approximate MO coefficients C̃µ̃r such that the approximate

orbital φ̃Xr is a good representation of the true orbital φXr are given in paper [7].

In summary, the fragment energy is evaluated inside the EOS Eo
P, the amplitude equations

are solved in the AOS AP, and the MOs are expanded on atoms in the atomic fragment extent

{AP}. Figure 7.7 gives an illustration of the spaces employed in an atomic fragment calculation

for a one-dimensional system. The pair fragments are formed as unions of the atomic fragments.

For a given AOS the amplitudes equations are solved as standard MP2 or CCSD calculations
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inside that limited orbital space. We now describe how the EOS and AOS are determined

in a practical calculation in a manner which ensures that the atomic fragment energies – and

therefore also the total correlation energy – are determined to a preset accuracy.

7.4.2 Determination of fragment orbital spaces

As discussed in Section 7.4.1, the effects on the atomic fragment energy Eo
P from local orbitals

surrounding P fall of rapidly with increasing distance to the P center. Thus, by gradually

expanding the orbital fragments to include orbitals located further and further away from P ,

each expansion step will include orbitals with still smaller effects on the fragment energy Eo
P.

This orbital expansion procedure can therefore be repeated until the atomic fragment energy is

converged to a predefined energy tolerance, denoted the fragment optimization threshold (FOT).

The orbital fragment expansion procedure determining the AOS may be carried out as depicted

in Figure 7.8. Each of the orbital spaces – i.e., the EOS [P ] (dark-red), the occupied buffer space

BP (light-blue), and the virtual buffer space BP (pink) – is gradually increased to ensure that

Eo
P is determined to the accuracy defined by the FOT. When the change in the atomic fragment

energy for a given expansion step is larger than the FOT, the step is accepted, otherwise it

is rejected. Continuing in this manner the cycle in Figure 7.8(B-D) is repeated until one full

optimization round is carried through where the sizes of the EOS, the occupied buffer space,

and the virtual buffer space all remain unchanged.

In practice the fragment expansions may be controlled by including all atoms which are

closer to P than a certain orbital space radius (with a different orbital space radius for [P ], BP,

and BP). New atoms are then included in the fragment by increasing the orbital space radii

for [P ], BP, and BP. Alternatively, new atoms may be introduced by including the nearest-

neighbours to the atoms which are already included in the fragment. A more sophisticated

fragment optimization scheme is currently being developed [136]. However, the general features

of the fragment optimization procedure are captured by the simple representation in Figure 7.8.

7.5 Illustrative results

In Section 7.5.1 we present proof-of-concept calculations demonstrating that the total MP2 and

CCSD correlation energies may be determined from DEC fragment calculations with control of

the errors introduced compared to a full molecular calculation. In Section 7.5.2 it is shown that

the fragment sizes and the relative energy errors in DEC-MP2 calculations are independent of

the size of the molecular system, and also that distant atom pairs may be omitted from the DEC

calculation. In all calculations the cc-pVDZ basis [137] has been applied.

7.5.1 DEC-MP2 and DEC-CCSD calculations on C14H2

The discussion regarding the accuracy of the DEC-MP2 and DEC-CCSD calculations compared

to full molecular MP2 and CCSD calculations is initiated by considering the C14H2 molecule.
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7.5 Illustrative results

Figure 7.8: Main steps in the fragment optimization procedure for atomic fragment P . Initially
a starting guess is made for the size of the orbital fragment space for evaluating Eo

P. The virtual
energy orbital space (EOS) (dark-red) is then determined (B), followed by an optimization of the
occupied (light-blue) and virtual (pink) buffer spaces (C and D). It is then checked that the spaces
are still optimal going through the steps in B, C and D again until the sizes of all orbital spaces
remain unchanged to yield the optimized fragment (E).
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In Table 7.2 the total energy errors (fourth column) compared to full molecular MP2 (A) and

CCSD (B) calculations for various FOTs are listed. In general, the errors decrease by an order

of magnitude, when the FOT is lowered by an order of magnitude, even though some deviance

from this general result is observed for CCSD (to be explained below).

Table 7.2: Energy errors [a.u.] compared to a full molecular calculation for single, pair, and total
correlation energies as a function of the fragment optimization threshold (FOT).

(A) MP2

FOT ∆(
∑

PE
o
P) ∆(

∑
P>Q ∆Eo

PQ) ∆Ecorr % of Ecorr

10−3 0.013063 0.016875 0.029938 98.278

10−4 0.001601 0.001775 0.003377 99.806

10−5 0.000121 0.000139 0.000260 99.985

10−6 0.000023 0.000014 0.000037 99.998

(B) CCSD

FOT ∆(
∑

PE
o
P) ∆(

∑
P>Q ∆Eo

PQ) ∆Ecorr % of Ecorr

10−3 -0.000811 0.000369 -0.000442 100.025

10−4 -0.000255 0.000067 -0.000189 100.011

10−5 -0.000059 0.000046 -0.000013 100.001

10−6 -0.000021 0.000006 -0.000015 100.001

The second and third columns in Table 7.2 contain the sum of the single atomic fragment

energy errors and the sum of the pair interaction energy errors, respectively, compared to a con-

ventional calculation. Henceforth we denote
∑

PE
o
P as the total single energy and

∑
P>Q ∆EPQ

as the total pair interaction energy. For both MP2 and CCSD the errors in the total single

energy and in total pair interaction energy decrease when tightening the FOT.

In general, the MP2 fragmentation errors are positive, i.e., the fragment energies calculated

using the DEC scheme are larger than the fragment energies calculated in the full orbital space.

Therefore, the total energy error ∆Ecorr compared to a full molecular calculation decreases

systematically when the FOT is lowered. In contrast, for CCSD the total single energy errors

are negative, whereas the total pair interaction energy errors are positive for the molecule under

consideration. This leads to cancellation of errors for CCSD, and consequently the total energy

errors for CCSD are smaller than those for MP2. This cancellation of errors is also the reason

why the error (accidentally) is smaller when the FOT is 10−5 than 10−6 for the CCSD case,

even though the total single and total pair interaction energy errors both decrease when lowering

the FOT. A closer look at the individual fragment energy errors reveals that these are always

positive for MP2, whereas their signs vary for CCSD. This will in general lead to cancellation

of errors for DEC-CCSD compared to DEC-MP2. Thus, in a sense, DEC-MP2 demonstrates

the "worst case scenario", where all individual fragment errors are added, whereas DEC-CCSD

in general give smaller errors due to cancellation effects. However, if the amplitudes are used
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Figure 7.9: Alanine alpha-helix oligomers, where n is the number of alanine residues.

to evaluate for example molecular gradients, errors of similar size will be obtained for MP2 and

CCSD as the cluster amplitudes are of similar quality.

In summary, it is a crucial feature of the DEC model that the full molecular correlation

energy may be determined to any desired accuracy simply by tightening the FOT. For CCSD

the error may be smaller than expected due to fortuitous cancellation of fragment energy errors.

It should be noted that when the FOT is decreased to yield increasingly accurate energies, the

fragment sizes increase to improve the description of the individual fragment amplitudes. Thus,

an increased accuracy as defined by the FOT comes at the price that the individual fragment

calculations become more expensive.

7.5.2 DEC-MP2 calculations on alanine oligomers

Having demonstrated that, for a given molecule, the error in the correlation energy in a DEC

calculation may be controlled by the FOT, we now investigate how the fragment sizes and the

correlation energy error are affected when the molecular size is systematically increased using

a fixed FOT of 10−4. The molecules under investigation are alpha-helix peptide oligomers

containing 2, 4, 6, 8, 10, or 20 alanine residues – see Figure 7.9. The geometries were obtained

using the Maestro program [79] without carrying out additional optimizations. The calculations
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Figure 7.10: Average (left) and maximum (right) number of occupied (green-dashed) and virtual
(red-solid) orbitals in the amplitude orbital space as a function of the number of alanine residues.

presented in this section2 have been carried out using the MP2 model.

Sizes of orbital spaces

Figure 7.10 gives the average (left) and maximum (right) number of occupied and virtual orbitals

in the AOS for the atomic fragments as a function of the molecular size. For the largest molecules

the orbital fragment sizes are independent on the system size. This is crucial for the applicability

of the DEC scheme to the calculation of correlation energies for large molecular systems – the

individual fragment calculations are of similar cost, regardless of the total molecular size.

The behavior in Figure 7.10 can be understood by considering the locality of the HF orbitals

which ultimately defines the sizes of the orbital fragments. The maximum orbital spread (MOS)

for a set of orbitals is a measure of the locality of these orbitals (see Chapter 10). For all

the considered alanine oligomers in Figure 7.9 the MOS is 2.34 a.u. The HF orbitals are thus

equally local, and therefore the sizes of the orbital fragment spaces are independent of molecular

size for the largest molecules in Figure 7.10. For the smallest molecules in Figure 7.10 many

atoms are located near the edges of the molecule. Such edge atoms, in general, require only

relatively small orbital fragment spaces. Consequently, the sizes of the orbital fragment spaces

in Figure 7.10 increases with molecular system size for small molecules, while they saturate for

the larger molecules where the relative number of edge atoms is small.

Energy errors

In Table 7.3 we present the errors in the correlation energy obtained in DEC-MP2 calculations

compared to full molecular MP2 calculations. For alanine(6), alanine(8), and alanine(10) the

absolute energy errors (third column) increases linearly with system size, while the percentage

of Ecorr that is recovered (fourth column) remains constant at approximately 99.88%. For the

2These calculations have been carried out solely to be presented in this thesis using an improved version of the

DEC program compared to the one used in paper [7]. However, the conclusions derived from these calculations

are the same as those presented in Section 7.2 of paper [7].
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smallest alanine oligomers the energy errors are somewhat smaller since many fragments (in

particular the pair fragments) include a very large fraction of the full molecular orbital space.

The fact that the absolute error increases with molecular size for larger molecules can be

understood by recalling that the total correlation energy is calculated as a sum of atomic frag-

ment and atomic pair fragment interaction energies, see Eq. (7.16). For MP2 calculations the

fragment energy errors are all positive (see the discussion in Section 7.5.1). Therefore, the errors

accumulate rather than cancel, and in effect the total energy error increases with system size.

In conclusion, the absolute MP2 energy errors are positive and size-extensive, whereas the

relative energy errors are independent of the system size. Cluster amplitudes, and therefore also

molecular properties (e.g., molecular gradients), can thus be determined with similar accuracy

independently of the system size.

Table 7.3: Absolute (∆Ecorr) and relative (% of Ecorr) energy errors of DEC-MP2/cc-pVDZ cal-
culations on alanine oligomers of increasing size compared to full molecular calculations.

# alanines Ecorr (a.u.) ∆Ecorr (a.u.) % of Ecorr

2 -1.74291 0.00056 99.97

4 -3.29833 0.00220 99.93

6 -4.85900 0.00533 99.89

8 -6.41841 0.00744 99.88

10 -7.97682 0.00974 99.88

20 -15.72189 — —

Pair interaction energies

As discussed in connection with Figure 7.5 (right), the pair interaction energies represent disper-

sion energies, which decay with the inverse pair distance to the sixth power. Figure 7.11 gives

the pair interaction energies ∆Eo
PQ (absolute values) as a function of pair distance for the ala-

nine(10) oligomer. Pairs separated by less than 2 Å have been omitted because there is no clear

distinction between Coulomb hole effects (Figure 7.5, left) and dispersion effects (Figure 7.5,

right) for short pair distances.

As expected the magnitude of the pair interaction energies ∆Eo
PQ decreases rapidly with

pair distance due to the r−6
PQ dependence of dispersion interactions. In fact, a power regression

fit (red line in Figure 7.11) to the function f(rPQ) = ar−bPQ gives b = 6.016.

From a practical point of view the rapid decrease of pair interaction energies with pair

distance implies that pairs separated by more than a certain distance (denoted the pair distance

cutoff) may be omitted from the DEC calculation with a negligible effect on the total correlation

energy. Thus, for a large molecule the number of pair interaction energies that needs to be

calculated scales linearly with the size of the molecule. In practice, a pair distance cutoff of 10 Å
3We were not able to carry out a full molecular standard MP2 calculation for alanine(20). The total correlation

energy listed for this molecule was calculated using the DEC scheme.
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Figure 7.11: Pair interaction energies (absolute values) against pair distance for alanine(10).

is reasonable for a general non-metallic molecular system, whereas 15 Å is a more conservative

value. We note that the small contributions from the omitted pair interaction energies can be

estimated by extrapolation using a power regression fit (such as the red curve in Figure 7.11)

for the calculated pair interaction energies.

7.6 Summary

The DEC CC method for determining the correlation energy is summarized in Figure 7.6. The

most important features of the DEC scheme are the following:

• The DEC scheme is linearly scaling, because the fragment sizes are roughly independent

of system size, and since distant pairs can be neglected.

• The DEC scheme is also embarrassingly parallelizable, because the fragment calculations

are independent.

• The DEC scheme ensures error control in the sense that the error in the correlation energy

compared to a standard calculation is defined by the FOT before the calculation is carried

out. During the calculation the orbital fragment sizes are determined in a black box manner

to ensure that the predefined accuracy is achieved.

• For the MP2 model the errors in the correlation energy are size extensive, whereas the

relative error is system independent.
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Chapter 8

The DEC method II: Different orbital

partitionings and amplitude errors

This chapter describes the work presented in paper [8].

8.1 Introduction

In Chapter 7 the foundation for the DEC CC method was established. In this chapter the DEC

scheme is investigated in more detail.

In Section 8.2 a virtual partitioning of the correlation energy is introduced, analogous with

the occupied partitioning in Section 7.3. In Section 8.3 we perform an error analysis of the CC

amplitudes used in a DEC calculation, and in Section 8.4 the DEC model is compared to some

existing local CC methods.

8.2 Different partitionings of the correlation energy

8.2.1 Full molecular system

For simplicity we restrict ourselves to the MP2 model in this chapter, and the singles amplitudes

are therefore omitted. Note, however, that the following discussion is also valid for the CCSD

model where singles are included.

By omitting singles amplitudes the DEC partitioning of the correlation energy in Eqs. (7.14)-

(7.16) becomes,

Eo
P =

∑
ij∈P
ab

tabij Liajb (8.1)

∆Eo
PQ =

∑
i∈P
j∈Q

∑
ab

tabij Liajb +
∑
i∈Q
j∈P

∑
ab

tabij Liajb (8.2)

Ecorr =
∑

P

Eo
P +

∑
P>Q

∆Eo
PQ (8.3)
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Figure 8.1: Illustrations of excitations from occupied orbitals φi and φj (blue) into virtual orbitals
φa and φb (red). Left: Short-range electron-electron repulsion described by the atomic fragment
energies Ev

P (virtual Coulomb hole). Right: Dispersion effects described by virtual pair interaction
energies ∆Ev

PQ.

In the atomic fragment energy Eo
P in Eq. (8.1) both occupied indices are assigned to the

atomic site P , while the occupied indices in ∆Eo
PQ in Eq. (8.2) are assigned to the atomic sites

P and Q. Equivalently, the partitioning of the correlation energy may be based on the virtual

indices. Specifically, by defining virtual atomic fragment and pair interaction energies as

Ev
P =

∑
ab∈P
ij

tabij Liajb (8.4)

∆Ev
PQ =

∑
a∈P
b∈Q

∑
ij

tabij Liajb +
∑
a∈Q
b∈P

∑
ij

tabij Liajb (8.5)

the correlation energy in Eq. (7.10) may be written as

Ecorr =
∑

P

Ev
P +

∑
P>Q

∆Ev
PQ (8.6)

For a calculation on the full molecular system the correlation energy expressions in Eq. (8.3)

and (8.6) yield the same result, whereas the individual fragment energies differ – for example,

Eo
P 6=Ev

P and ∆Eo
PQ 6=∆Ev

PQ. Thus, the occupied partitioning in Eqs. (8.1)-(8.3) and the virtual

partitioning in Eqs. (8.4)-(8.6) constitute two equivalent – but independent – approaches to

calculating the correlation energy, as will be discussed in more detail in Section 8.2.2.

Let us comment on the physical interpretation of the different orbital partitionings assuming

local HF orbitals. In connection with Figure 7.5 (left) it was argued that the occupied atomic

fragment energy Eo
P describes a coulomb hole in the wave function in terms of excitations

from occupied orbitals φi and φj centered on atomic site P to the virtual excitation space,

while the occupied pair interaction energy ∆Eo
PQ describes dispersion effects as depicted in

Figure 7.5 (right). Similar qualitative interpretations can be made for the fragment energies

entering the virtual partitioning scheme. Ev
P describes excitations from the occupied orbital

space to virtual orbitals φa and φb centered on atom P , which, in a sense, is a virtual Coulomb

hole, see Figure 8.1 (left). The virtual pair interaction energy ∆Ev
PQ describes dispersion effects

in terms of excitations from the occupied orbital space to orbitals φa and φb centered on atomic

sites P and Q, respectively, see Figure 8.1 (right).
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8.2 Different partitionings of the correlation energy

To highlight the equivalence between the occupied and virtual partitioning schemes – and at

at the same time illustrate the importance of using local orbitals – Figure 8.2 gives a numerical

example where pair interaction energies are plotted against pair distance, while atomic fragment

energies are plotted at zero distance. Orbitals of different locality have been used for both

the occupied (left) and virtual (right) partitioning schemes. Dispersion effects decay with the

inverse pair distance to the sixth power r−6. For an efficient description of these effects it is

thus important that the pair interaction energies display this behavior. Clearly, the r−6 decay

of dispersion effects cannot be effectively exploited when delocalized canonical orbitals (top) are

used; no distance dependence is observed in this case. For the semi-local orbitals (middle) the

r−6 decay is starting to become apparent, while the pair interaction energies for the most local

orbitals1 (bottom) display a clear r−6 dependence. Thus, the use of local orbitals is crucial for

an efficient description of the dispersion interactions. The pair interaction energy plots for the

occupied and virtual orbitals are very similar, demonstrating that (i) they both describe the

same physical effect (dispersion), and (ii) the occupied and virtual orbitals have similar locality.

We also note that the distribution of atomic fragment energies becomes more homogeneous for

the local orbitals.

8.2.2 Orbital fragments for occupied and virtual partitioning schemes

It is well-known that the total correlation energy Ecorr is invariant with respect to a unitary

transformation among the occupied orbitals and among the virtual orbitals. Similar conditions

hold for the fragment energies. In particular, the occupied fragment energies Eo
P and ∆Eo

PQ in

Eqs. (8.1) and (8.2) are invariant to orbital rotations among the virtual orbitals [8], while the

virtual fragment energies Ev
P and ∆Ev

PQ in Eqs. (8.4) and (8.5) are invariant with respect to

orbitals rotations among the occupied orbitals. This is a conceptually important result stating

that the orbital invariance of the total correlation energy is somewhat preserved for the fragment

energies. From a practical point of view the most efficient evaluation of the fragment energies

are obtained when both occupied and virtual orbitals are local as discussed in Section 7.3.

Specifically, using local orbitals the virtual space summations in Eqs. (8.1) and (8.2) may be

restricted as in Eqs. (7.18) and (7.19),

Eo
P =

∑
ij∈P
ab∈[P ]

tabij Liajb (8.7)

∆Eo
PQ =

(∑
i∈P
j∈Q

+
∑
i∈Q
j∈P

) ∑
ab∈[P ]∪[Q]

tabij Liajb (8.8)

Since the occupied and virtual orbitals are equally local (see Chapter 10), we may in a similar

fashion approximate the occupied summations in the virtual atomic fragment energies and pair

1These orbitals were localized using the localization strategy described in Chapter 10.
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Figure 8.2: Pair interaction energies (blue crosses) against pair distance and atomic fragment
energies (red circles at zero distance) for an alanine(8) alpha-helix at the full molecular MP2/cc-
pVDZ level of theory. Calculations using occupied (left) and virtual (right) orbital partitionings are
shown for delocalized canonical orbitals (top), semi-local orbitals (middle), and localized orbitals
(bottom). Also shown are the least local occupied orbital (left), the least local virtual orbital (right),
and the corresponding maximum orbital spreads (MOS), which is a measure of orbital locality (see
Chapter 10).
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8.2 Different partitionings of the correlation energy

interaction energies in Eqs. (8.4) and (8.5),

Ev
P =

∑
ab∈P
ij∈[P ]

tabij Liajb (8.9)

∆Ev
PQ =

(∑
a∈P
b∈Q

+
∑
a∈Q
b∈P

) ∑
ij∈[P ]∪[Q]

tabij Liajb (8.10)

where [P ] is the set of occupied orbitals spatially close to atomic site P (including P ).

The orbital fragment spaces needed to determine the fragment energies using the virtual

partitioning scheme may be determined in exactly the same manner as was done for the occupied

partitioning scheme in connection with Figure 7.8 – with the roles of the occupied and virtual

orbital spaces reversed. For comparison, an occupied and a virtual atomic fragment are displayed

in Figure 8.3.

To demonstrate the equivalence of the occupied and virtual partitionings we have in Table 8.1

given the error in the DEC-MP2 correlation energy compared to a full molecular MP2/cc-pVDZ

calculation as a function of the FOT for both partitionings. The test system is the arachidic

acid molecule (saturated fatty acid of composition C20H40O2) with a geometry obtained using

the Maestro program [79]. Since the fragments have been individually optimized to the given

FOTs, the energy errors are proportional to the FOT and of similar size for both partitionings.

Let us summarize some important features for the occupied and virtual orbital partitionings:

• The sizes of the orbital spaces are optimized independently for the occupied and virtual

partitioning schemes to ensure that the fragment energies Eo
P and Ev

P are determined to a

given accuracy defined by the FOT.

• The correlation energy can be calculated using either the occupied or the virtual partition-

ing scheme. Thus, for large molecular systems –where it is not possible to carry out a full

molecular reference CC calculation – these two independent schemes provides an internal

consistency check for the calculated correlation energy.

• The use of both occupied and virtual partitionings turns out to be essential for determining

the DEC-MP2 molecular gradient, as will be described in Section 9.

Table 8.1: Energy errors ∆Ecorr (a.u.) compared to full molecular calculation for occupied and
virtual partitionings using different fragment optimization thresholds (FOTs). The calculations
were carried out on arachidic acid at the MP2/cc-pVDZ level of theory.

FOT ∆Ecorr (occ.) ∆Ecorr (virt.)

10−3 0.028254 0.027579

10−4 0.003201 0.001865

10−5 0.000269 0.000261

10−6 0.000033 0.000011
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Figure 8.3: Illustration of a single atomic fragment for atomic site P using occupied (A) and
virtual (B) partitionings of the orbital space. Each square represents the set of occupied or virtual
orbitals assigned to a particular atom. For each partitioning scheme the atomic fragment energy is
evaluated using the energy orbital space (EOS) (dark-red and dark-blue), whereas the CC amplitude
equations are solved in the amplitude orbital space (AOS) (dark-red, dark-blue, pink, and light-
blue).

8.3 Error analysis of DEC amplitudes

We now examine the errors that occur in the DEC fragment calculations, where the fragment

energies are determined to an accuracy defined by the FOT. For simplicity only an atomic frag-

ment energy using the occupied partitioning is considered. A similar analysis can be performed

for pair fragments as well as for fragments entering the virtual partitioning scheme.

The atomic fragment energy is determined to a given FOT, i.e.,

Eo
P,full = Eo

P,dec + δo
P, δo

P ∝ FOT (8.11)

where Eo
P,full is determined from a full CC calculation, as in Eq. (8.1), and the approximate

DEC energy Eo
P,dec is determined using Eq. (8.7). The amplitudes of a full molecular calculation

tabij,full may in the DEC EOS space be expressed as:

tabij,full = tabij,dec + δtabij ; (ij ∈ P , ab ∈ [P ]) (8.12)

where tabij,dec is an amplitude from the DEC calculation [Figure 8.3(A)] and δtabij is a correction

term. Inserting Eq. (8.12) into Eq. (8.1) and using Eq. (8.7), we may divide the energy errors

into two different types:

δo
P = δo

1P + δo
2P (8.13)
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8.3 Error analysis of DEC amplitudes

where

δo
1P =

∑
i,j∈P
a,b∈[P ]

δtabij (2giajb − gibja) (8.14)

and

δo
2P =

∑
ij∈P

∑
ab\a∧b∈[P ]

tabij,full(2giajb − gibja) (8.15)

The δo
1P errors arise because the amplitudes tabij,dec of the EOS have been determined in a

restricted orbital space [Figure 8.3(A)]. The EOS amplitudes thus interact with each other and

with the amplitudes of the buffer space, but the weak interactions with amplitudes outside

this buffer space have been neglected. The errors in the EOS amplitudes δtabij resulting from

neglecting this weak interaction are proportional to δo
1P.

The δo
2P errors arise because amplitudes referencing virtual orbitals outside the [P ] space are

neglected. To gain more insight into the δ2 errors we note that, for a set of local orbitals, the

Fock matrix is diagonally dominant and, for analysis purposes, the tabij,full amplitudes determined

from Eq. (7.13) may therefore be approximated with their diagonal component

tabij,full ≈ −(∆F abij )−1giajb (8.16)

where we have used that giajb = gaibj since we assume real orbitals, and where ∆F abij is given by

∆F abij = Faa + Fbb − Fii − Fjj (8.17)

Applying Eq (8.16) in Eq. (8.15) gives

δo
2P = −

∑
ij∈P

∑
ab\a∧b∈[P ]

tabij,full(2t
ab
ij,full − tbaij,full)∆F

ab
ij (8.18)

Roughly speaking, the δ2 errors are thus proportional to the square of the amplitudes which are

neglected in the DEC calculation.

In an actual calculation one will in general observe a mixture of these two error types.

However, it is instructive to consider the two limiting cases, where either δo
1P or δo

2P is the

dominant contribution to the total energy error δo
P:

1. δo
1P � δo

2P: In this case the errors in the amplitudes δtabij are linear in the energy error

δo
P ≈ δo

1P, which is proportional to the FOT, i.e.,

δtabij ∝ FOT (ij ∈ P , ab ∈ [P ]) (8.19)

2. δo
2P � δo

1P: The error in the energy δo
P ≈ δo

2P (which is still proportional to the FOT)

depends quadratically on the amplitudes outside the EOS [P ]. Roughly speaking, the

amplitudes outside the EOS are therefore proportional to the square root of the FOT:

tabij,full ∝ FOT1/2 (ij ∈ P , ab \ a ∧ b ∈ [P ]) (8.20)
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Let us conclude this section by presenting some calculated amplitude errors for MP2/cc-

pVDZ calculations on the arachidic acid molecule (same calculations as in Table 8.1) for atomic

fragment calculations using the occupied partitioning scheme. (Similar results are obtained for

pair fragments and for fragments entering the virtual partitioning scheme). We let ∆ab
ij denote

the difference between the (i, j, a, b)th component of the DEC amplitudes tabij,dec and the full

molecular amplitudes tabij,dec:

∆ab
ij = tabij,dec − tabij,full (8.21)

For a given atomic fragment the mean error ∆̄, the standard deviation ∆std, the mean absolute

error ∆̄abs, and the maximum absolute error ∆max are given by:

∆̄ =
1

Namp

∑
ijab

∆ab
ij (8.22a)

∆std =

(∑
ijab(∆

ab
ij − ∆̄)2

Namp − 1

)1/2

(8.22b)

∆̄abs =
1

Namp

∑
ijab

|∆ab
ij | (8.22c)

∆max = max
ijab
|∆ab

ij | (8.22d)

When considering amplitude errors of type 1 for an atomic fragment P , the summation

indices ijab in Eq. (8.22) run over the orbitals inside the EOS (ij ∈ P and ab ∈ [P ]), and Namp

is the number of EOS amplitudes. For errors of type 2, the virtual indices run over orbitals

outside the EOS (ij ∈ P , while φa, φb, or both are assigned to atoms outside the EOS), and

Namp is the number of such amplitudes. For errors of type 2 we have tabij,dec = 0, since, by

definition, no CC amplitudes outside the EOS are used to when calculating the atomic fragment

energy Eo
P.

In Table 8.2 the average values of the error measures in Eq. (8.22) for all atomic fragments are

given. When the FOT is lowered all error measures decrease because the amplitudes inside the

EOS become increasingly accurate (error type 1), and because fewer (small) amplitudes outside

the EOS are neglected (error type 2). The errors of type 1 and 2 are of similar magnitude, and

as a consequence we do not observe any of the limiting cases listed above.

In conclusion, the important message from Table 8.2 is that the amplitudes (and not just the

correlation energy itself) become increasingly accurate when the FOT in decreased. Therefore,

molecular properties calculated using these amplitudes will also become increasingly accurate

when tightening the FOT.

8.4 Comparing DEC to existing local coupled-cluster methods

Having discussed the DEC model in this and the previous chapter, let us now compare the DEC

model to existing local CC methods.

The local correlation wave function method development was pioneered by Pulay [138] and

Saebø and Pulay [139], and the local coupled-cluster method of Hampel and Werner [140] and
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8.4 Comparing DEC to existing local coupled-cluster methods

Table 8.2: Amplitude errors for atomic fragments using the occupied partitioning scheme. Stan-
dard deviation ∆std, mean absolute error ∆̄abs, and maximum absolute errors ∆max (all in a.u.) for
amplitudes referencing atomic fragments inside and outside the EOS.

1. Inside EOS

FOT ∆std ∆̄abs ∆max

10−3 1.1 · 10−5 4.3 · 10−6 4.2 · 10−4

10−4 1.4 · 10−6 5.6 · 10−7 5.2 · 10−5

10−5 2.6 · 10−7 7.6 · 10−8 1.5 · 10−5

10−6 6.2 · 10−8 1.3 · 10−8 5.6 · 10−6

2. Outside EOS

FOT ∆std ∆̄abs ∆max

10−3 5.9 · 10−6 6.2 · 10−7 9.0 · 10−4

10−4 1.9 · 10−6 2.3 · 10−7 2.0 · 10−4

10−5 4.7 · 10−7 6.1 · 10−8 5.2 · 10−5

10−6 1.2 · 10−7 1.7 · 10−8 1.1 · 10−5

Schütz and Werner [141–144] constitutes a prominent early contribution. Many other local

coupled-cluster methods have been proposed, including atomic orbital-based CC [145–147], the

natural linear scaling approach [148], the cluster-in-molecule approach [149–151], the divide-and-

conquer approach [152], the fragment molecular orbital approach [153], the incremental scheme

[154, 155], and Laplace-MP2 [156–161].

For local CC methods the standard CC correlation energy is, in general, an asymptotic limit,

which is obtained when all local thresholds are removed. In practice, ad hoc approximations to

the standard CC method are introduced in the local CC methods. The approximations include

a priori assignments of local orbital spaces, and, for some models, bond cuts of the molecular

system. At the end of a local CC calculation that relies on ad hoc approximations, the precision

of the calculation compared to a full CC calculation is in general not known.

One may argue that compared to the large errors in CC calculations due to the basis set

incompleteness and the approximate CC wave function model, the approximations that are in-

troduced in local CC methods are acceptable. However, in chemistry one is typically interested

in the energy differences of molecular conformers – for example reaction enthalpies and inter-

action energies of van der Waals complexes – which are small compared to total energies. To

obtain a reliable and accurate description of these small differences, it is important to know the

errors introduced by the local approximations compared to conventional calculations. We note

that in some cases the "errors" introduced by the local approximations can be advantageous. For

example, the approximations in the local CC method of Werner and coworkers may eliminate
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basis set superposition errors (BSSEs) [162].

The most important feature of the DEC method compared to existing local CC methods is

the control of the error in the correlation energy compared to a conventional calculation. This

control is achieved by expanding the local orbital fragment spaces in a black box manner during

the calculation, rather than determining these spaces according to some preset thresholds. An

additional source of error control in the DEC method – which is not present in other local CC

methods – is the internal consistency check of the final correlation energy obtained by invoking

the occupied and virtual partitioning schemes discussed in Section 8.2. Furthermore, the DEC

method employs (nonredundant) local virtual orbitals, rather than (redundant) projected atomic

orbitals (PAOs), which are usually used in existing local CC methods. The biggest problem with

the current version of the DEC program is that the individual orbital fragments can become quite

large if a high accuracy (low FOT) is requested. At the same there are fairly many fragments to

be handled for a large molecule2 even though the number of fragments scales only linearly with

system size. Possible improvements to reduce the computational cost are discussed in connection

with future perspectives for the DEC method in Section 11.2.

Finally, let us describe other local CC methods in more detail and compare to the DEC

scheme. We shall limit ourselves to some of the methods which, as the DEC scheme, use a full

HF reference state.

• Local coupled-cluster method

In the local coupled-cluster (LCC) method of Werner and coworkers [140–144] a set of

local occupied orbitals |φi〉,
|φi〉 =

∑
µ

|χµ〉Cµi (8.23)

is used to span the occupied orbital space, while PAOs |χ̃〉 are used to span the virtual

orbital space

|χ̃µ〉 =
(

1−
∑
i

|φi〉〈φi|
)
|χµ〉 (8.24)

To each localized orbital |φi〉 a local orbital domain of PAOs [i] is selected, typically using

the completeness criterion of Boughton and Pulay [163]. Electron pairs ij are assigned the

union of orbital domains [ij] for orbitals |φi〉 and |φj〉. Using these approximations the

CC singles and doubles operators in Eqs. (7.3) and (7.4) are written as

T1 =
∑
i

∑
µ∈[i]

tµi Eµi (8.25)

T2 =
1

2

∑
ij

∑
µν∈[ij]

tµνij EµiEνj (8.26)

where the PAO summation indices µν are restricted to the local domains. In the LCC

method the CC amplitude equations are thus solved for the full molecular system, such
2We only have a relatively limited number of processors available at the supercomputer facilities in Aarhus,

and therefore we cannot fully exploit the fact that the fragment calculations are embarrassingly parallelizable.
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that only amplitudes inside the predefined orbital domains are nonzero. In contrast, the

DEC method consists of a series of independent fragment calculations, where the CC

amplitude equations are solved in a restricted orbital space for each fragment. Further

approximations can be introduced in the LCC method, such as approximate treatments

of weak and distant pairs, leading to linear scaling with system size [144].

• Cluster-in-a-molecule

The cluster-in-a-molecule (CIM) method introduced by Li et al. [149] employs a similar

partitioning of the correlation energy as the DEC method, but the summations run over

the individual orbitals, rather than over atomic sites:

Ecorr =
∑
I

∆E[I] +
∑
I 6=J

∆E[IJ ] (8.27)

where

∆E[I] =
∑
ab∈{I}

tabii Liajb (8.28)

∆E[IJ ] =
∑

ab∈{IJ}

tabij Liajb (8.29)

The orbital domain [I] is a "cluster" containing the occupied orbital φi, a set of neigh-

bouring virtual orbitals or PAOs {I}, and some local environment orbitals (similar to the

buffer spaces in the DEC scheme). The pair cluster [IJ ] is constructed from the union of

orbital domains for clusters [I] and [J ]. Computational savings in the CIM method have

been made by neglecting all amplitudes tabij where the value of a screening function Ω(i, j)

is below some predefined threshold [149]:

Ω(i, j) =

(∑
µν

C2
µiS

2
µνC

2
νj

)1/2

(8.30)

Many pair interactions (φi, φj) presenting dispersion effects will be neglected based on this

criteria. Recently, an alternative energy partitioning scheme (less reminiscent of the DEC

scheme) and modified selection criteria for the orbital fragment spaces (e.g., by correlating

two MOs φi and φj if the absolute value of the corresponding Fock matrix element Fij is

above a preset threshold ζ) have been proposed for the CIM method [150, 151].

• The incremental scheme

In the incremental scheme of Stoll [154] the energy E of a system in partitioned as

E =
∑
I

∆εI +
1

2!

∑
IJ

∆εIJ +
1

3!

∑
IJK

∆εIJK + . . . (8.31)

∆εI = εI ; ∆εIJ = εIJ −∆εI −∆εJ ; . . . (8.32)

where εI is the energy of a subsystem I, εIJ is the energy of subsystems I and J together,

etc. By using local occupied orbitals and defining local excitation spaces in terms of
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PAOs (similar to the LCC method), Friedrich and coworkers [155] applied the incremental

scheme to obtain the CC correlation energy. Eq. (8.31) is typically truncated after third

or fourth order. As demonstrated in the CIM and DEC methods the correlation energy

can be expressed in terms of only single and pair "subsystems". In a sense, triple- and

higher-order subsystems are included in the incremental scheme to compensate for the

fact that the virtual excitation spaces employed in the single and pair calculations are too

small. Thus, the incremental scheme typically uses many more subsystems than the DEC

method, but these subsystems are smaller.

• Laplace-MP2

In the canonical basis the MP2 correlation energy is given by,

Ecorr = −
∑
ijab

giajb(2giajb − gibja)
εa + εb − εi − εj

(8.33)

where εi and εj (εa and εa) are occupied (virtual) orbital energies. The Laplace transfor-

mation suggested by Almlöf [156],

1

xq
=

∫ ∞
0

exp(−xqt)dt ≈
τ∑

α=1

w(α) exp(−xqt(α)) (8.34)

may be applied to the energy denominator in Eq. (8.33) by substituting xq=εa+εb−εi−εj .
The integrals in Eq. (8.34) can be approximated by a few (typically 5-8) grid points τ

giving sufficient accuracy. Häser [157] and Ayala and Scuseria [158] have used the Laplace

approach to formulate atomic orbital based MP2 (AO-MP2). Recently, Ochsenfeld and

coworkers have used efficient integral screening techniques and presented state-of-the-art

implementations of the AO-MP2 scheme [159–161]. The Lagrange AO-MP2 approach is

quite different from the DEC approach, but it is, to some extent, possible to control the

error compared to a conventional MP2 calculation by increasing the number of grid points

τ – similar to the error control in terms of the FOT in the DEC scheme. However, the

AO-MP2 strategy cannot be generalized to more advanced CC methods.
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Chapter 9

MP2 molecular gradient using the DEC

scheme

This chapter describes the work presented in paper [9].

9.1 Introduction

The determination of molecular equilibrium structures – i.e., local minima on the potential

energy surface – is one of the most important tasks of electronic structure theory. An efficient

geometry optimization requires that molecular gradients are evaluated analytically.

The analytical evaluation of molecular gradients was initiated by the seminal work of Pulay

in 1969 [62] on the HF molecular gradient. Following this work, the MP2 molecular gradient was

formulated by Pople and coworkers [164]. The MP2 molecular gradient has traditionally been

formulated in the canonical MO basis [164–167]. Such formulations are prone to high-order

computational scaling with system size and can therefore not be used for calculations on large

molecular systems.

Different approaches have been attempted for reducing the high-order scaling of traditional

MP2 formulations. Using the MP2 resolution of the identity (MP2-RI) approach [168, 169] re-

duced scaling for the MP2 molecular gradient has been obtained [170–173]. A different strategy

proposed by Schweizer, Doser, and Ochsenfeld [174] is to abandon the MO basis and reformu-

late the MP2 gradient equations in the AO basis using Laplace transformations of the energy

denominator [156]. In a local CC context Werner and coworkers have presented molecular gra-

dients for the local MP2 energy [175] and also extended this approach to employ density-fitting

techniques [176].

In this chapter we describe how the MP2 molecular gradient may be evaluated within the

DEC framework. The formulation is linear-scaling and embarrassingly parallelizable and thus

suitable for calculations on large molecular systems. The errors in the DEC-MP2 molecular

gradient compared to the standard MP2 gradient may be controlled by the same FOT used to

control the error in the correlation energy in Chapters 7 and 8.
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9.2 Full molecular calculation

9.2.1 The Lagrangian

We consider a closed-shell molecular system at some general geometry x described at the MP2

level of theory. At this geometry the MP2 amplitude equation in Eq. (7.13) is given by,

tΩaibj(x) = gaibj(x) +
∑
c

tcbij (x)Fac(x) +
∑
c

tacij (x)Fbc(x)

−
∑
k

tabkj(x)Fki(x)−
∑
k

tabik (x)Fkj(x) = 0 (9.1)

Furthermore, the HF optimization condition (the Brillouin theorem) is satisfied [63]

κΩai(x) = 〈HF(x)|[Eai(x), H(x)]|HF(x)〉 = 0 (9.2)

where H(x) and Eai(x) are given by Eqs. (1.3) and (7.5), respectively, evaluated at a general

geometry x.

At x the MP2 energy EMP2(x) (including the HF contribution) may be expressed as,

EMP2(x) = EHF(x) + Ecorr(x) = EHF(x) +
∑
ijab

tabij (x)Liajb(x) (9.3)

where we have used Eq. (7.10).

The MP2 energy in Eq. (9.3) is not determined variationally, and consequently its derivatives

are not subject to the 2n+1 rule (Section 1.7). To avoid solving for first-order amplitude

parameters when evaluating the molecular gradient it is advantageous to construct a variational

MP2 Lagrangian [31] by adding to the MP2 energy the constraints in Eqs. (9.1) and (9.2)

associated with the two sets of Lagrange multipliers t̄ and κ̄,

L(x, t̄, κ̄) = EMP2(x) +
1

2

∑
aibj

t̄abij (x)tΩijab(x) +
∑
ai

κ̄ai(x)κΩai(x) (9.4)

The variational conditions for the MP2 Lagrangian yield the following equations:

∂L(x, t̄, κ̄)

∂t̄abij (x)
= tΩijab(x) = 0 (9.5a)

∂L(x, t̄, κ̄)

∂κ̄ai(x)
= κΩai(x) = 0 (9.5b)

∂L(x, t̄, κ̄)

∂tabij (x)
= 0 (9.5c)

∂L(x, t̄, κ̄)

∂κai(x)
= 0 (9.5d)

Eqs. (9.5a) and (9.5b) trivially yields the equations for the t- and κ-parameters in Eqs. (9.1)

and (9.2), respectively, whereas Eqs. (9.5c) and (9.5d) determine the multipliers.
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9.2.2 The molecular gradient

By construction L(x, t̄, κ̄) satisfies the 2n+1 rule for the response parameters and the 2n+2 rule

for the multipliers. Therefore, the molecular gradient evaluated at some reference geometry x0

may be obtained as the partial derivative of the Lagrangian in Eq. (9.4), i.e.,

dE

dx

∣∣∣∣
x=x0

=
∂L

∂x

∣∣∣∣
x=x0

≡ L(x)

= E
(x)
MP2 +

1

2

∑
abij

t̄
ab(0)
ij

tΩ
(x)
ijab +

∑
ai

κ̄
(0)
ai

κΩ
(x)
ai (9.6)

where a superscript (x) denotes partial differentiation with respect to a nuclear coordinate x.

Since only zeroth order multipliers are considered in this work we shall henceforth omit the ’(0)’

superscript and write the zeroth order multipliers simply as t̄abij and κ̄ai.

The MP2 gradient in Eq. (9.6) may be expressed in the following form [9]:

L(x) = L
(x)
1-el + L

(x)
reort + L

(x)
coulomb + L

(x)
exchange + L

(x)
Θ + h(x)

nuc (9.7)

The nuclear-nuclear repulsion contribution h(x)
nuc can be identified by differentiation of Eq. (1.4d),

while the one-electron, reorthonormalization, Coulomb, exchange, and L
(x)
Θ contributions are

given by,

L
(x)
1-el =

∑
µν

h(x)
µν (2D + ρ)µν (9.8a)

L
(x)
reort = −1

2

∑
µν

S(x)
µν Wµν (9.8b)

L
(x)
coulomb = 2

∑
µν

J (x)
µν (D)(2D + ρ)µν (9.8c)

L
(x)
exchange = −

∑
µν

K(x)
µν (D)(2D + ρ)µν (9.8d)

L
(x)
Θ =

1

2

∑
ijab

Θab
ij g

(x)
aibj (9.8e)

where all contributions (except L(x)
Θ ) are written in the AO basis. Dµν is the HF density matrix

in the AO basis, and S
(x)
µν is the differentiated overlap matrix in the AO basis. The effective

"MP2 density matrix" ρ matrix is most easily written in the MO basis,

ρ =

(
−Xij −κ̄Tia
−κ̄ai Yab

)
(9.9)

where X and Y are calculated from amplitudes and multipliers,

Xij =
∑
abk

tbaki t̄
ba
kj ; Yab =

∑
cij

tcaji t̄
cb
ji ; (9.10)

and the ρ matrix transforms to the AO basis according to

ρµν =
∑
pq

CµpρpqCνq (9.11)
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The coulomb and exchange transformations on a general matrix A (in the AO basis) are

given by:

Jµν(A) =
∑
τε

gµντεAτε (9.12a)

Kµν(A) =
∑
τε

gµτενAτε (9.12b)

The reorthonormalization matrix W can be written in the following form (all quantities are

given in the AO basis),

W = 4DFD + Φ + ρsFD̄ + DG(ρs)D̄ (9.13)

where (in the AO basis)

ρs = ρ+ ρT (9.14a)

D̄µν =
∑
p

CµpCνp (9.14b)

G(ρs) = 2J(ρs)−K(ρs) (9.14c)

and the p summation in Eq. (9.14b) runs over both occupied and virtual orbital indices. The Φ

matrix in the MO basis is given by,

Φoo
ij =

∑
abk

Θba
kigbkaj (9.15a)

Φov
ic =

∑
abk

Θba
kigbkac (9.15b)

Φvv
ab =

∑
cij

Θca
ji gcjbi (9.15c)

Φvo
ak =

∑
cij

Θca
ji gcjki (9.15d)

and it transforms to the AO basis in the same way as ρ in Eq. (9.11). The o and v superscripts

indicate whether the indices refer to the occupied or to the virtual orbital spaces. The four-

dimensional array Θ entering Eq. (9.15) and the L(x)
Θ contribution is calculated from a linear

combination of t amplitudes and t̄ multipliers,

Θiajb = 4tabij − 2tbaij + t̄abij (9.16)

Finally, the coulomb and exchange transformations in L(x)
coulomb and L(x)

exchange are evaluated

as in Eq. (9.12a) and (9.12b) but with differentiated integrals.

9.2.3 Multiplier equations

The multiplier equations are determined from Eqs. (9.5c) and (9.5d). The equation for the t̄

multipliers may be written as,

2Laibj +
∑
c

(
t̄cbijFac + t̄acij Fbc

)
−
∑
k

(
t̄abkjFki + t̄abikFkj

)
= 0 (9.17)
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Note that Eq. (9.17) for the t̄ multipliers is equivalent to the equation for the t amplitudes in

Eq. (7.13) – except from the fact that 2Laibj occurs in Eq. (9.17), whereas gaibj occurs in (7.13).

Consequently, when a local HF basis is used, the multipliers are local in much the same way as

the amplitudes (Section 7.4.1).

The equation for the κ̄ multipliers becomes,

E[2]κ̄ = R(X,Y,Φ) (9.18)

The right-hand side matrix is given by

Rai(X,Y,Φ) = Φia − Φai +Gai(M) (9.19)

where Gai(M) is a two-electron Fock transformation [as in Eq. (9.14c)] transformed to the MO

basis with one virtual and one occupied index,

Gai(M) =
∑
µν

CµaCνiGµν(M) (9.20a)

M = YAO + YT
AO −XAO −XT

AO (9.20b)

In Eq. (9.20b) XAO and YAO are the X and Y matrices in the AO basis, which transform

according to Eq. (9.11).

The electronic Hessian transformation E[2]κ̄ is given by

(E[2]κ̄)ai = 2
∑
b

κ̄biFab − 2
∑
j

κ̄ajFij + 2Gai(κ̄
s
AO) (9.21)

where κ̄sAO=κ̄AO+κ̄TAO is a symmetrized κ̄ matrix in the AO basis.

9.3 DEC scheme

The equations defining the molecular gradient in Section 9.2 are valid for any choice of HF basis.

If a local HF basis is employed it is possible to simplify the computational effort by applying the

DEC scheme to evaluate the MP2 gradient. Specifically, it is possible to perform all manipula-

tions of four-index quantities (two-electron integrals g, t amplitudes, and t̄ multipliers) at the

orbital fragment level, while two-index quantities (including Coulomb and exchange contribu-

tions) are treated for the full molecular system. Inspection of the MP2 gradient contributions in

Eq. (9.8) reveals that the determination of X, Y, Φ, and L(x)
Θ involves four-index quantities, and

the main task when formulating the DEC-MP2 gradient scheme is thus to exploit the locality

of the HF orbitals to evaluate these quantities in small orbital fragment spaces. The details are

given in Section 3.4 of paper [9]. In this work we just note that it is important to invoke both

the occupied and the virtual orbital partitioning schemes discussed in Section 8.2.

The DEC scheme for evaluating the MP2 molecular gradient is summarized in Figure 9.1:

• A full molecular HF calculation is carried out and a set of local HF orbitals is determined.
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• Atomic fragment calculations and pair fragment calculations are carried out using both

the occupied and virtual orbital partitionings (independently) to determine X, Y, Φ, and

L
(x)
Θ . It turns out that Y, Φvv, Φvo, and L(x)

Θ are most easily evaluated using the occupied

partitioning scheme, whereas the determination of the X, Φoo, and Φov requires the virtual

partitioning scheme.

• The right-hand side matrix R(X,Y,Φ) for the κ̄ equation is constructed from X, Y, and

Φ, and the κ̄ equation is solved for the full molecular system.

• The "effective MP2 densities" ρ and W for the full molecular system are constructed from

X, Y, Φ, and κ̄.

• Finally, the MP2 molecular gradient is evaluated using ρ, W, and L
(x)
Θ (and the HF

density).

Figure 9.1: Overview of the main steps in the DEC-MP2 gradient scheme, where yellow boxes
denote fragment calculations, whereas light-blue boxes denote full molecular calculations. Note that
all manipulations of four-index quantities are carried out at the orbital fragment level. In this way
four-index quantities are never constructed for the full molecular system.
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Let us conclude this section by commenting on the scaling of the computational time with

system size for the DEC-MP2 gradient scheme. By construction, the number of fragments

to consider scales quadratically with system size. As demonstrated in Section 7.5.2, distant

atomic pairs representing dispersion energies (decaying rapidly with the inverse pair distance

to the sixth power) may be omitted from a DEC energy calculation with negligible effects on

the total correlation energy. This leads to a linear-scaling number of pair fragments for a large

molecule. Similarly, in a DEC-MP2 molecular gradient calculation, distant atomic pairs describ-

ing dispersion forces (derivatives of dispersion energies with respect to nuclear displacements)

may be omitted from the DEC calculation because their effects on the MP2 gradient is negli-

gible. (This statement is supported by numerical results in Section 9.4.2.) The evaluation of

the DEC-MP2 gradient is thus linear-scaling. Furthermore, the fragment calculations (yellow

boxes of Figure 9.1) are independent, making the evaluation of X, Y, Φ, and L(x)
Θ linear-scaling

and embarrassingly parallel. With respect to the manipulations of two-index quantities (in-

cluding coulomb and exchange transformations), the MP2 gradient equations may be viewed

as generalized HF gradient expressions with the effective MP2 density matrix ρ and the MP2

reorthonormalization matrix W replacing the HF density matrix D and the HF reorthonormal-

ization matrix DFD. Thus, manipulations of two-index quantities in the DEC-MP2 gradient

scheme (light-blue boxes of Figure 9.1) may be carried out in a linear-scaling manner using

similar techniques as for the HF gradient [177–179]. In summary, all steps in the evaluation of

the DEC-MP2 molecular gradient can be made linear-scaling, and the fragment calculations are

furthermore embarrassingly parallelizable.

9.4 Results

In this section we compare DEC-MP2 molecular gradients to standard MP2 gradients by con-

sidering the arachidic acid molecule (same molecular structure and basis set as in Section 8.2.2).

Before describing the results let us comment on the relation between the FOT and the

accuracy of the DEC-MP2 molecular gradient compared to the conventional MP2 gradient. The

accuracy of the DEC-MP2 molecular gradient is ultimately determined by the accuracy of the t

amplitudes and t̄ multipliers, which enter linearly in the MP2 gradient expression. As discussed

in Section 8.3 the amplitudes are subject to two types of errors. The amplitude errors of type

1 scales linearly with the FOT, whereas the errors of type 2 scales with FOT1/2. (A similar

analysis can be performed for the t̄ multipliers). Thus, if the FOT is decreased by a factor 10,

we expect the errors of the DEC-MP2 molecular gradient to diminish by a factor between 101/2

(type 2 errors are dominating) and 10 (type 1 errors are dominating).
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Table 9.1: Standard deviation ∆std, absolute error ∆̄abs, and maximum absolute errors ∆max

(all in mHartree/bohr) for DEC-MP2 gradients compared to standard MP2 gradients for various
fragment optimization thresholds (FOTs). The calculations were carried out on arachidic acid using
the cc-pVDZ basis set.

FOT ∆std ∆̄abs ∆max

10−3 0.99 0.43 7.1

10−4 0.29 0.13 1.5

10−5 0.028 0.012 0.13

10−6 0.0040 0.0018 0.022

9.4.1 Gradient error measures

We let ∆i denote the difference between the ith component of the DEC-MP2 gradient xdec
i and

the full molecular MP2 gradient xfull
i :

∆i = xdec
i − xfull

i (9.22)

and consider the mean error ∆̄, the standard deviation ∆std, the mean absolute error ∆̄abs, and

the maximum absolute error ∆max:

∆̄ =
1

3N

3N∑
i=1

∆i (9.23a)

∆std =

√∑3N
i=1(∆i − ∆̄)2

3N − 1
(9.23b)

∆̄abs =
1

3N

3N∑
i=1

|∆i| (9.23c)

∆max = max
i
|∆i| (9.23d)

where the summations run over all gradient components, i.e., N is the number of atoms.

Table 9.1 gives ∆std, ∆̄abs, and ∆max for DEC-MP2 gradient calculations on arachidic acid

using different FOTs. In general, the errors decrease when the FOT is decreased. In particular,

in accordance with the error analysis in Section 8.3 and the discussion above, the error measures

in Table 9.1 decrease by a factor between 101/2≈3.2 and 10 when the FOT is lowered by an

order of magnitude. For example, ∆std decreases by roughly 3.4 when the FOT is lowered from

10−3 to 10−4, whereas ∆std decreases by ca. 10 when the FOT is lowered from 10−4 to 10−5.

9.4.2 The use of pair distance cutoffs

In Section 9.3 it was stated that distant pairs may be omitted from the DEC-MP2 gradient

calculation without affecting the accuracy of the gradient, since these pairs describe dispersion

effects which decay rapidly with pair distance. In this section we present numerical results

supporting this statement.

100



9.5 Summary and perspectives

Table 9.2: Standard deviation ∆std, absolute error ∆̄abs, and maximum absolute errors ∆max (all
in mHartree/bohr) for DEC-MP2 gradient calculations using different pair-cutoffs compared to a
full molecular calculation on arachidic acid (cc-pVDZ basis) for FOT = 10−6.

Pair-cutoff (Å) ∆std ∆̄abs ∆max

all pairs 0.0040 0.0018 0.022

20 0.0040 0.0018 0.022

15 0.0040 0.0018 0.022

10 0.0040 0.0019 0.022

8 0.0041 0.0021 0.022

6 0.0063 0.0047 0.033

4 0.037 0.024 0.232

2 0.91 0.63 6.3

0 2.5 1.6 17

Table 9.2 gives ∆std, ∆̄abs, and ∆max for FOT=10−6, where pairs separated by more than a

given pair distance cutoff have been omitted. The pair distances cutoff values range from one

extreme, where all pairs are included, to the other extreme where all pairs are omitted. The

row with all pairs included corresponds to the values presented in Table 9.1. For a pair-cutoff of

roughly 10 Å or above, the errors are the same as when all pairs are included. In other words,

pairs separated by more than 10 Å do not contribute to the MP2 molecular gradient and may be

omitted from the gradient calculation. Thus, for large molecules, the number of pair fragments

to consider scales only linearly (rather than quadratically) with the molecular system size.

9.5 Summary and perspectives

We have demonstrated that the MP2 molecular gradient can be evaluated using the DEC scheme

as summarized in Figure 9.1. The scheme is linear-scaling and embarrassingly parallel. All ma-

nipulations of four-index quantities are carried out using small local orbital fragment spaces (yel-

low steps in Figure 9.1), whereas the HF-like two-index manipulations involving effective MP2

densities are carried out for the full molecular system (light-blue steps in Figure 9.1). Roughly

speaking, the short-range electron correlation effects (four-index quantities) are treated locally

using orbital fragments, whereas a proper treatment of the long-range electronic interactions

(two-index quantities) requires that the full molecular system is considered.

The errors of the DEC-MP2 molecular gradient compared to a standard MP2 molecular

gradient may be controlled (and made arbitrarily small) by tightening the FOT parameter. An

obvious next step is to apply the DEC-MP2 molecular gradient in the context of performing a

geometry optimization for a large molecular system. This is a subject for future investigations.

At this stage we note that – since the FOT parameter controls the error in the MP2 gradient –
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it will be advantageous to tighten the FOT parameter during the geometry optimization, such

that a more accurate MP2 gradient is obtained when the molecular geometry is close to the

equilibrium structure.

Considering future perspectives, we believe that the development of the DEC-MP2 molecular

gradient is an initial step towards performing geometry optimizations and towards calculating

higher order energy derivatives for large molecular systems within the DEC framework – both

at the MP2 level of theory and for more accurate CC methods, such as the CCSD model.
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Chapter 10

Local orbitals

This chapter describes the work presented in paper [10].

10.1 Introduction

When describing the DEC method in Chapters 7-9 a central assumption is the existence of a

set of local orbitals for both the occupied and the virtual orbital spaces. In this chapter it is

demonstrated how such orbitals can be obtained.

The CC energy is invariant under rotation among the occupied and among the virtual MOs.

This freedom can be used to transform the conventional canonical orbitals to a local HF ba-

sis [138]. A large variety of different localization procedures have been proposed [180–193]. Three

localization functions are commonly used. The scheme attributed to Boys [180–182] minimizes

the spatial extent of the MOs by maximizing the distance between the orbital centroids. This

is equivalent to maximizing the function

ξBoys =
∑
p

∑
x

〈φp|x|φp〉2 (10.1)

where |φp〉 refers to a set of occupied (or virtual) MOs and x is a component of the position

operator. The scheme by Edmiston–Ruedenberg (ER) [183–185] maximizes the self-repulsion

energy

ξER =
∑
p

(φpφp|φpφp) (10.2)

The scheme by Pipek–Mezey (PM) [189, 190] minimizes the number of atomic centers over which

each MO extends by maximizing the sum of squares of the gross atomic Mulliken population of

the MOs

ξPM =
∑
p

∑
A

|〈φp|PA|φp〉|2 (10.3)

where PA is the projection operator onto the space of atomic orbitals centered on atom A.

Ref. [190] gives a brief introduction to the different localization functions and the Jacobi sweep

that is usually used to obtain the localized MOs.
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For the occupied molecular orbitals, the above localization functions usually have strong and

isolated minima, and the localization functions have been successfully optimized using a Jacobi

sweep of iterations to give a set of local occupied HF orbitals. However, for the virtual space

it is extremely difficult to obtain a set of localized orthonormal orbitals using a Jacobi sweep

of iterations [194]. In the absence of localized virtual HF orbitals, redundant PAOs, where the

occupied orbital space is projected out of the AO basis, have been used to span the virtual orbital

space [139–144, 146, 147, 150, 151, 154, 155, 195–197]. Besides being redundant, a more severe

drawback of the PAOs is that they are much less local than localized occupied HF orbitals.

In Section 10.2 it is described how local orthonormal orbitals for both the occupied and

virtual orbital spaces can be obtained. Section 10.3 contains some illustrative results, and in

Section 10.4 we give some concluding remarks.

10.2 Local orbitals using powers of the orbital variance

10.2.1 Preceding developments

The orbital localization procedure described in paper [10] relies to some extent – historically as

well as the practical implementation — on preceding developments carried out in the Aarhus

quantum chemistry group. Let us therefore put the work presented in paper [10] into the

appropriate perspective by summarizing these developments.

In Ref. [198] local orbitals for both the occupied and virtual orbital spaces are obtained by

applying the least-change approach [198, 199] in combination with the three-level optimization

algorithm [200, 201] for the HF energy. The least-change algorithm utilizes the fact that the

solution to the Fock eigenvalue equation can be divided into three parts: (1) a transformation

from the AO basis to an orthonormal basis, (2) a HF optimization condition in this orthonormal

basis, which ensures that the Fock matrix is block-diagonal with vanishing elements between the

occupied and virtual HF orbitals, and (3) a canonical condition, which ensures that the Fock

matrix is diagonal with orbital energies on the diagonal.

The canonical condition severely delocalizes the HF orbitals and it is therefore removed from

the solution of the Fock eigenvalue equation in the least-change approach, where the smallest

possible transformation matrices are determined from the AO basis to its orthogonalized coun-

terpart and from this orthogonalized basis to an optimized HF basis. The least-change approach

gives a set of local occupied and local virtual HF orbitals [198], because small transformations

are carried out on the local AO basis. The major problem with the least-change algorithm is

that in part 2, the identification of the smallest transformation matrix depends on the ordering

of the orthonormal orbitals, i.e., whether an orthonormal basis function is associated with the

occupied or the virtual orbital space. The optimal ordering can be identified by examining the

orbital spread for all different orderings, which is an O(n5) process [198] (n being the number

of orthonormal orbitals). The ordering that leads to the smallest maximum orbital spread gives

the local least-change molecular (LCM) orbitals.
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When determining the LCM orbitals for larger molecular systems, the number of orderings

becomes prohibitively large. To avoid the expensive reordering procedure one may instead

use a simple and cheap version of the LCM orbitals, where the ordering of the orthonormal

orbitals is simply based on their orbital occupancies (projections against the occupied space).

These simplified LCM orbitals are not local enough for efficient use in a subsequent correlated

calculation. However, they provide a better starting guess than the completely delocalized

canonical orbitals for generating a set of truly local orbitals for both the occupied and virtual

orbital spaces.

10.2.2 Orbital variance as a localization measure

The orbital variance Ωp for an orbital |φp〉 is defined as its average deviation from its average

position squared

Ωp =
∑
x

(
〈φp| (x− 〈φp|x|φp〉)2 |φp〉

)
=
∑
x

(
〈φp|x2|φp〉 − 〈φp|x|φp〉2

)
(10.4)

and the corresponding orbital spread σp is the square root of this number

σp = Ω1/2
p (10.5)

The orbital variance (or spread) of an orbital |φp〉 is a measure of the spatial extent of that

orbital and thus of the locality of the orbital.

Consider a set of orthonormal orbitals S, which refers either to the set of occupied orbitals or

to the set of virtual orbitals. The sum of the variances for the orbitals in the set S is a measure

of the locality for this set

ξ =
∑
p∈S

Ωp (10.6)

Minimizing ξ while keeping the orbitals orthonormal gives the set of orbitals that on average

are most local.

In local correlation methods it is important that the average orbital variance is small. How-

ever, it is equally important that the maximum orbital variance is small, because a single de-

localized orbital will destroy the locality of the set of orbitals as a whole. For example, in the

context of the DEC method, a single delocalized virtual orbital would have to be included in

all atomic fragments P,Q,R, . . . of the form in Figure 7.7, thereby destroying the locality of the

DEC atomic fragment calculations.

A small maximum orbital variance can be obtained by introducing a penalty on the orbitals

with large orbital variances. This may be accomplished by using powers of the variance

ξm =
∑
p∈S

Ωm
p (10.7)

as a measure of locality, where m is a positive integer. Increasing m increases the penalty for

having orbitals with a large orbital variance (outlier orbitals) and thus makes the distribution of

105



Local orbitals

orbital spreads for the orbitals in S more uniform. We note that the minimization of ξ1 (m=1)

is equivalent to the Boys minimization procedure [180–182].

In a HF calculation, the molecular core orbitals are in general almost identical to the atomic

core orbitals. If the molecular core orbitals are included in the summation in Eq. (10.7), the

molecular valence orbitals will get small undesirable tail coefficients referencing the core orbitals.

We therefore exclude the molecular core orbitals from the summation in Eq. (10.7) to maintain

the division of electrons into core and valence spaces.

The trust-region method of Fletcher [202] can be used to minimize ξm for both the occupied

and the virtual HF orbitals. The minimization is most difficult for the virtual set of HF orbitals,

where many very large negative Hessian eigenvalues are encountered in the initial iterations. For

the occupied HF orbitals only small negative Hessian eigenvalues are encountered in the initial

iterations and these disappear fast during the optimization. This is probably the reason why

a Jacobi sweep of iterations, in general, is able to optimize the Boys function for the occupied

orbitals but not for the virtual orbitals. For more details regarding the minimization of ξm
the reader is referred to paper [10]. We note that the computational cost of the localization

procedure is negligible compared to the total HF calculation.

10.3 Illustrative results

We now give examples of local occupied and virtual HF orbitals obtained by minimizing the

localization function ξm in Eq. (10.7) using the set of simplified LCM orbitals described in

Section 10.2.1 as a starting guess. Localized orbitals for the following molecules will be con-

sidered: Superbenzene (C24H12) with a B3LYP/cc-pVTZ optimized geometry; Buckminster-

fullerene (C60) with a B3LYP/6-31G(d,p) optimized geometry; and the I27SS domain of the

titin protein (392 atoms) with a BP86/6-31G optimized geometry (but with 6-31G∗ basis func-

tions on the three sulfur atoms and on two carbon atoms as described in Ref. [203]). The effects

of increasing m in Eq. (10.7) will be investigated. Calculations using different cardinal numbers

X of Dunning’s correlation-consistent basis sets [137] cc-pVXZ are presented. In particular,

we consider X = D,T,Q for superbenzene, X = D,T for C60, and only X = D for the titin

fragment.

10.3.1 Maximum orbital spread

The maximum orbital spread (MOS) for a set of orbitals S is given by

MOS = max
p∈S

σp (10.8)

where σp is given in Eq. (10.5). We use the MOS as a measure of the locality of the set S.
The MOSs are presented for superbenzene (Table 10.1), C60 (Table 10.2), and the titin

fragment (Table 10.3) for the occupied (Occ) and virtual (Virt) HF orbitals when ξm is optimized

for m=1, 2, ..., 10. For the titin fragment only m=1, 2, ..., 5 results are reported.
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Table 10.1: Maximum orbital spreads (a.u.) for localized superbenzene orbitals using different
penalty exponents m. Also shown are maximum orbital spreads (a.u.) for least-change molecular
(LCM) orbitals, projected atomic orbitals (PAO), and canonical molecular orbitals (CMO).

cc-pVDZ cc-pVTZ cc-pVQZ

Occ Virt Occ Virt Occ Virt

1 2.288 3.004 2.292 3.261 3.012 7.614

2 2.253 2.717 2.256 2.447 2.258 2.560

3 2.226 2.263 2.228 2.317 2.239 2.337

4 2.192 2.245 2.193 2.113 2.208 2.241

5 2.170 2.234 2.171 2.064 2.192 2.177

6 2.156 2.224 2.157 2.050 2.180 2.122

7 2.146 2.213 2.146 2.040 2.171 2.079

8 2.138 2.202 2.138 2.032 2.163 2.041

9 2.131 2.194 2.132 2.025 2.157 2.021

10 2.126 2.189 2.127 2.020 2.151 2.007

LCM 3.300 4.152 3.300 4.553 3.444 5.747

PAO — 3.550 — 3.551 — 3.844

CMO 7.458 10.737 7.452 11.551 7.452 12.160

Table 10.2: Maximum orbital spreads (a.u.) for localized C60 orbitals using different penalty
exponents m. Also shown are maximum orbital spreads (a.u.) for projected atomic orbitals (PAO),
and canonical molecular orbitals (CMO).

cc-pVDZ cc-pVTZ

Occ Virt Occ Virt

1 2.281 2.868 2.285 3.212

2 2.156 2.426 2.159 2.469

3 2.128 2.349 2.131 2.310

4 2.114 2.311 2.118 2.235

5 2.100 2.288 2.101 2.189

6 2.088 2.274 2.089 2.160

7 2.080 2.263 2.081 2.140

8 2.073 2.255 2.074 2.124

9 2.068 2.249 2.069 2.112

10 2.064 2.244 2.065 2.103

PAO — 3.469 — 3.497

CMO 7.211 9.257 7.222 10.225
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Table 10.3: Maximum orbital spreads (a.u.) for localized orbitals for the I27SS domain of the titin
protein using different penalty exponents m. Also shown are maximum orbital spreads (a.u.) for
projected atomic orbitals (PAO), and canonical molecular orbitals (CMO).

cc-pVDZ

Occ Virt

1 2.245 3.483

2 2.188 2.644

3 2.163 2.519

4 2.153 2.467

5 2.133 2.415

PAO — 4.710

CMO 24.754 26.334

In Figure 10.1 we present graphical illustrations of the least local occupied orbital and the

least local virtual orbital for superbenzene, C60, and the titin fragment for m=2. Furthermore,

on the front page of this thesis the least local virtual orbital for the insulin molecule (cc-pVDZ

basis) using m=2 is displayed (hydrogen atoms are omitted for clarity).

Different molecules and different cardinal numbers

Considering the occupied HF orbitals for the cc-pVXZ bases, the MOS with m=1 is similar for

X=D and X=T , while for X=Q there is a significant increase. For example, for superbenzene

with m=1 the MOS is 2.29 (cc-pVDZ), 2.29 (cc-pVTZ), and 3.01 (cc-pVQZ). When m increases

the MOS of the occupied orbitals decreases and becomes similar for all cardinal numbers. For

superbenzene with m=10 we thus obtain 2.13 (cc-pVDZ), 2.13 (cc-pVTZ), and 2.15 (cc-pVQZ)

for the MOS for the occupied orbitals. The similarity between the MOSs for the occupied

orbitals reflects that the occupied orbitals are described well at the cc-pVDZ level and that only

small changes are introduced in the occupied orbitals when the cardinal number is increased.

For larger m values the MOSs become similar, even for molecules with rather different electronic

structures. For example form=5 the MOSs for the occupied orbitals in the cc-pVDZ calculations

are 2.17, 2.10, and 2.13 for superbenzene, C60, and the titin fragment, respectively.

For the virtual HF orbitals, the MOS varies somewhat with the cardinal number. For m=1

the MOS increases with the cardinal number, and outliers may be encountered. For example, for

superbenzene the MOS for the virtual HF orbitals is 3.00 (cc-pVDZ), 3.26 (cc-pVTZ) and 7.61

(cc-pVQZ), where the latter is an extreme outlier (to be detailed in Section 10.3.2). For larger

m values the MOS decreases and the outliers disappear. It is also seen that for larger m values

the MOS may become smaller for the virtual orbitals when the cardinal number is increased.

For example, for C60 and m=10 the MOS is 2.24 (cc-pVDZ) and 2.10 (cc-pVTZ). To understand

this somewhat counter-intuitive result, recall that when the cardinal number is increased from
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10.3 Illustrative results

Figure 10.1: Least local orbitals for the occupied and virtual orbital spaces for the I27SS domain of
the titin protein (left), C60 (middle), and superbenzene (right) plotted with orbital amplitude values
of 0.03 (a.u.). The calculations were carried out using the cc-pVDZ basis and a power exponent
m=2.

X to X+1, we add atomic basis functions which are more local than the localized molecular HF

orbitals for cardinal number X. The added atomic basis functions therefore have the flexibility

to make the MOS smaller for cardinal number X+1 than for X.

Similar to the occupied orbitals, the locality of the virtual HF orbitals is nearly system

independent for larger m values and for a given basis set. For example, for the cc-pVDZ basis

and m=5 the MOS for the virtual orbitals is 2.23, 2.29, and 2.42 for superbenzene, C60, and the

titin fragment, respectively.

It is also worth mentioning that for larger m values the difference between the MOSs for

the occupied and virtual orbitals decreases. In fact, for larger cardinal numbers the virtual

orbitals may have a smaller MOS than the occupied orbitals. For example, for the cc-pVQZ

superbenzene calculation with m=10, the MOS is 2.15 for the occupied orbitals and 2.01 for the

virtual orbitals.

Comparing local virtual orbitals with PAOs

In Tables 10.1, 10.2, and 10.3 we have also reported the MOSs for the PAOs [Eq. (8.24)] spanning

the virtual HF orbital space and (only Table 10.1) for the occupied and virtual LCM orbitals.

The MOS for the LCM orbitals is significantly larger than for the localized orbitals, while

the PAO values are in between the values for the virtual LCM orbitals and our localized virtual

orbitals. In general, the PAOs seem to become less local when the size of the molecular system

is increased. For example, using the cc-pVDZ basis, the MOS for the PAOs of C60 is 3.47, while
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Figure 10.2: Least local virtual orbital for power exponent m=2 (left), and least local PAO (right)
plotted for different orbital amplitude values 0.03, 0.003, and 0.0003 (a.u.). The calculations were
carried out on the I27SS domain of the titin protein using the cc-pVDZ basis.

it is 4.71 for the larger titin fragment. The latter value is significantly larger than the MOS for

our least local virtual orbital in the m=2 case (2.64). The fact that the MOS is a meaningful

measure of locality is supported by Figure 10.2, where these two orbitals are displayed for orbital

amplitude values of 0.03, 0.003, and 0.0003. The displayed orbitals substantiate that the least

local PAO is significantly less local than our least local virtual orbital for m=2.

10.3.2 Detailed analysis of the virtual local orbitals for superbenzene

To understand what is happening when the penalty for delocalized orbitals is increased we have

in Figure 10.3 displayed the orbital spreads for the individual virtual orbitals in a cc-pVQZ

calculation on superbenzene for m=1 and m=2 along with illustrations of the least and most

local virtual orbitals.

It is seen that outliers occur for m=1. In particular, Figure 10.3 reveals the presence of one

extreme outlier orbital with an orbital spread of 7.61, which is basically spread out over the

full molecular system. By increasing the penalty to m=2 the outliers disappear, and the orbital

spread distribution becomes very uniform, such that all virtual orbitals have orbital spreads of

about 2. The removal of virtual outlier orbitals when m is increased happens at the expense

that the most local virtual orbitals are delocalized. For example, when the maximum orbital

spread is decreased from 7.61 to 2.56 by increasing m, the minimum orbital spread is increased

from 0.97 to 1.63.

In Figure 10.3 we have also displayed the orbital spreads for all PAOs and plotted the PAOs

110



10.4 Conclusion

Figure 10.3: Virtual orbitals obtained with power exponents m=1 (top) and m=2 (middle) and
PAOs (bottom) in a cc-pVQZ calculation on the superbenzene molecule. The orbitals were plotted
using orbital amplitude values of 0.03 a.u. Left column: Orbital spreads (a.u.) against orbital
number for all virtual orbitals. Middle column: Most local virtual orbital or PAO and associated
orbital spread. Right column: Least local virtual orbital or PAO and associated orbital spread.

with the smallest (0.86) and largest (3.84) orbital spreads. The orbital spreads for the PAOs are

in general larger than the orbital spreads for the virtual orbitals with m=2. It is also seen that

the distribution of orbital spreads is more homogeneous for the virtual orbitals with m=2 than

for the PAOs.

10.4 Conclusion

We have demonstrated that a set of local orthonormal HF orbitals can be obtained for both the

occupied and virtual orbital spaces. The local HF orbitals are obtained by setting up localization

functions where not only the occupied (or virtual) HF orbitals on average are most local, but

where a penalty is also imposed for delocalized orbitals. Increasing this penalty leads to a more

uniform distribution of orbital spreads – i.e., all orbitals become equally local. We have also

shown that orbitals for molecules with rather different electronic structures are equally local.

Our local virtual HF orbitals (for m>1) are more local than the PAOs which are often used

to span the virtual orbital space in local correlation calculations. Furthermore, the local virtual

orbitals are non-redundant and orthonormal, in contrast to the PAOs. The local orbitals have

already been applied for the DEC method, but also for other local correlation methods these

orbitals appear to be a superior alternative to the commonly used PAOs.
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Chapter 11

Summary and outlook

The overall goal of the work presented in this PhD thesis is to develop methods that enable elec-

tronic structure calculations on large molecular systems. The work falls into two subcategories,

which are summarized individually below.

11.1 Part A

Part A is devoted to response theory formulations at the self-consistent field level of theory. A

few key contributions are:

• An atomic orbital-based density matrix formulation of self-consistent field response the-

ory is described, where the use of time- and perturbation-dependent basis functions is an

integrated part of the formulation. This very general formulation allows for the straightfor-

ward determination of computationally tractable expressions for any molecular property

which can be described in terms of response functions. Since the response functions are

expressed in the atomic orbital basis, linear scaling with system size can be obtained for

large molecular systems, where sparse matrix algebra can be exploited.

• In damped response theory finite excited state lifetimes are introduced in terms of complex

frequencies. Damped response theory is an efficient tool for determining absorption spectra

for large molecular systems in any frequency range without detailed knowledge about the

individual excited states.

The developments described above are publically available in the LSDalton (Linear-Scaling

Dalton) program [12].

So far, the response theory formulations presented here have mainly been used in test cal-

culations. Future perspectives include applications of these developments to "real life" systems.

To mention just one possible application, it is well-known that large conjugated molecules in

general have large two-photon absorption cross sections. The damped response theory formu-

lation of two-photon absorption in Chapter 6 is an efficient tool for studying the two-photon

properties of these systems computationally. Such studies may aid experimentalists in designing
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new compounds with increased two-photon absorption cross sections with potential use in, for

example, 3D microscopy and pharmaceutical applications.

11.2 Part B

In part B the Divide-Expand-Consolidate (DEC) coupled-cluster (CC) method is described.

Here we summarize the main ideas:

• In the DEC scheme the local nature of the dynamical electron correlation is exploited

to partition a full CC calculation into a set of small orbital fragment calculations. The

scheme is linearly scaling and embarrassingly parallelizable. Importantly, the error in the

correlation energy introduced by the orbital fragmentations can be controlled (and made

arbitrarily small) by tightening the so-called fragment optimization threshold parameter.

This flexibility is achieved by optimizing the orbital fragment sizes in a black box manner

during the calculation. At this stage the DEC scheme has been developed for the MP2

and CCSD correlation energies, and for the MP2 molecular gradient.

• A basic assumption for the applicability of the DEC model is the existence of a set of local

HF orbitals. In Chapter 10 it is shown that local orbitals for both the occupied and virtual

orbital spaces can be obtained by minimizing powers of the orbital variance.

The DEC scheme is very promising for calculating the CC correlation energy for large molec-

ular systems. Experience gained by the development of the MP2 molecular gradient also allows

one to be optimistic with respect to developing second- and higher-order energy derivatives –

both for the MP2 model and for higher order CC models.

The DEC project is still at an initial stage, and several new developments are currently being

investigated to improve the performance. Most calculations presented here have been carried

out using the MP2 model, since the DEC-CCSD code is still at a testing stage. Furthermore,

the relatively small cc-pVDZ basis set has been used in most calculations. Clearly, the goal is

to improve the DEC code such that calculations using more accurate CC models, such as CCSD

or maybe even CCSD(T), and larger basis sets can be routinely applied. The main bottleneck

for achieving this goal is that the orbital fragments for a general three-dimensional molecule

can become too large to be handled efficiently by the current DEC code if a high accuracy

(accurate CC model, large basis set, and low fragment optimization threshold) is requested.

We are currently investigating different strategies for improving the performance of the DEC

program:

• The current implementation of the CC amplitude equations in the DEC program is not yet

optimal, and the implementation could be significantly improved such that larger orbital

fragments can be handled. However, it may be more advantageous to use the DEC program

in combination with another quantum chemistry program, where an efficient parallel CC

implementation already exists, such that the solution of the individual fragment amplitude
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equations can be easily parallelized, or at least run with an optimal operation count. In

this way the DEC program will constitute the main driver and the only task of the external

quantum chemistry program will be to provide CC amplitudes for the fragments based on

input from the DEC program. We expect that this can be done without much effort,

since a DEC CC fragment calculation is simply a standard CC calculation carried out in

a reduced orbital space.

• The largest (and therefore computationally most expensive) pair fragments are those refer-

encing distant atomic sites, where the orbital spaces of the corresponding atomic fragments

do not overlap. However, the contributions to the correlation energy (or the molecular gra-

dient) from such pairs are very small, since they describe dispersion effects. Therefore, it is

a waste of computational resources to calculate these small contributions very accurately,

and a more economical approach is to use smaller orbital spaces for distant pairs.

• The number of fragments can be reduced by combining atomic fragments – for example,

two atomic fragments P and Q can be combined into a superfragment P = P ∪ Q. If

the orbital spaces for the original atomic fragments P and Q overlap significantly, the

construction of a superfragment will lead to savings in the total computational time by

reducing the number of pair fragments. One possible strategy is to (i) construct the atomic

fragments as described in Chapter 7, (ii) investigate the overlap of the orbital spaces for

these atomic fragments to construct superfragments whenever feasible, and (iii) carry out

single and pair fragment calculations for these superfragments.

• It is advantageous to develop more local molecular orbitals as this will lead to smaller

orbital fragments in DEC calculations. This can possibly be achieved by using other

localization functions than the one described in Chapter 10.

In conclusion, the DEC approach provides an efficient scheme for carrying out large scale

CC calculations with control of the error relative to a standard CC calculation. There are still

technical obstacles to be addressed before calculations on large molecules can be routinely carried

out. However, we are confident that these issues will be solved and that DEC will become a

fully fledged computational tool for studying large molecular systems.
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11.3 Dansk resume

I teoretisk kemi bruges kvantekemiske modeller til at beregne information om molekylære sys-

temer. De kvantekemiske beregninger udføres ofte på supercomputere og kan anvendes i kom-

bination med eksperimenter til at fortolke disse samt til at forudsige nye eksperimenter. Til

en vis grad kan kvantemekaniske beregninger også erstatte eksperimentelle undersøgelser, og

således kan dyre og potentielt farlige eksperiementer udføres billigt og risikofrit på en computer.

Eksempelvis kan mange molekyler "fremstilles" og undersøges på computeren (i stedet for i labo-

ratoriet) for derved at identificere nogle få molekyler, der besidder en given egenskab. Den største

udfordring for eksisterende kvantemekaniske modeller er at beregningstiden vokser dramatisk for

store molekyler – især for de mest nøjagtige modeller. Eksempelvis vokser beregningstiden for

den såkaldte CCSD metode med systemets størrelse i sjette potens – dvs. hvis en beregning på

et lille molekyle tager 1 time, så vil en beregning på et molekyle af ti-dobbelt størrelse tage 106

timer, altså 114 år! Vi er ofte interesserede i at studere store molekyler – f.eks. vil man gerne

kunne undersøge kvantemekanisk hvordan et medikament binder til et protein – men dette er

ofte ikke muligt med de traditionelle implementationer af kvantemekaniske modeller pga. den

eksplosive vækst i beregningstid.

I løbet af mit PhD studie har jeg undersøgt, hvordan man kan reformulere eksisterende kvan-

temekaniske modeller, således at disse bliver anvendelige for store molekyler – ideelt set skal

beregningstiden kun vokse lineært med molekylets størrelse. Dette er blevet gjort for responste-

ori (bestemmelse af molekylære egenskaber) indenfor den såkaldte selv-konsistente felt-model,

samt for energi- og energigradient-beregninger med den mere nøjagtige coupled-cluster model.

Sidstnævnte formulering er ikke blot lineært skalerende, men også triviel at parallelisere, således

at en beregning på et stort molekyle kan splittes op i små separate beregninger, som kan køres

uafhængigt af hinanden på en supercomputer med mange processorer. Herved nedsættes den

totale beregningstid drastisk. Der er stadig tekniske detaljer, der skal forbedres før vi rutinemæs-

sigt kan udføre beregninger på store systemer, men de grundlæggende formuleringer er blevet

udviklet, implementeret og testet.
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